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We study continuous diffusion models applied to Gaussian data.

® \We derive exact solutions to the backward equations (Proposition 1).
® \We theoretically study the initialization error (Proposition 2).

® \\le compute exact Wasserstein errors over time.

® \\e present an empirical observation of the score approximation error.

Forward SDE [1]
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Gaussian assumption
The data distribution is Gaussian: p, = //(0,2).
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Proposition 1 (Exact solutions of the backward SDEs under
Gaussian assumption)

Backward SDE
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< Under the Gaussian assumption, the strong solution is
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Probability flow ODE
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< Under the Gaussian assumption, the unique solution is

1/221/2
—1

)’t—Z Yo -

Exact 2-\Wassersteln errors:

Assuming that the two covariance matrices 2,2, are
simultaneously diagonalizable with respective eigenvalues

(4;1); and (4;,);
2
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Proposition 2 (Study of the initialization error)

Under Gaussian assumption, denoting pSDE (resp. pODE ) the
marginals of the backward SDE (resp. probability flow ODE) with

Initialization error
WZ(pSDEa pt) < WZ(pODEa pt) s
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lllustration of three error types

Theoretical backward process
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Diffusion models for (Gaussian distributions: Exact solutions and Wasserstein errors

Bruno Galerne

bruno.galerne@univ-orleans.fr

Exact Wasserstein errors for the truncation, the initialization and the discretization errors

e Under the Gaussian assumption, we compute exact
Wasserstein errors with respect to different error
types along the time.

Discretization
+ Initialization errors
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Discretization
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+ truncation errors

e \We illustrate these errors in the two graphs on the

right, using the Gaussian fitted to the CIFAR-10 — o -—m  --a
dataset. = ODE Euler = = Heun

SDE discretization ODE discretization

e Euler Maruyama (EM)

e Exponential integrator (El)

e Runge-Kutta 4 (RK4) S SDE = EM =% E DDPM
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Study of the score approximation: the most crucial practical aspect Various generated samples

- The probability flow ODE is more affected by the initialization error than the backward SDE.

- The backward SDE is more affected by the discretization error than the probability flow ODE.

- Without score approximation, Heun’s scheme is theoretically the go-to method, as already observed empirically [3].

- However, stochastic schemes are more resilient with respect to the score approximation error than deterministic ones.
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e \We study the score approximation with a Gaussian distribution of
microtextures to produce realistic samples [2].

® [he backward equations are discretized with a score learned by a
neural network (U-NET).

e \We compute empirical Wasserstein errors.
® \We provide a comparison based on the FID metric.

® \\e observe that Heun’s scheme Is more sensitive to score
approximation errors than EM scheme.

Exact score distribution Learned score distribution

P Wappaata) | W5 (0 paata) | FID(™ piats) | W™ (0g™ Paata) 4 FID(0™ Pinta) ¢

EM 5.16 5.16 0.089 15.6 1.02

Heun 3.73 3.73 0.045 56.7 194
Conclusion




