



# Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors Emile Pierret Bruno Galerne





bruno.galerne@univ-orleans.fr

We study continuous diffusion models applied to Gaussian data.

- We derive exact solutions to the backward equations (Proposition 1).
- We theoretically study the initialization error (Proposition 2).
- We compute exact Wasserstein errors over time.
- We present an empirical observation of the score approximation error.

# Forward SDE [1]

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \le t \le T, x_0 \sim p_0.$$

$$\Leftrightarrow x_t = e^{-B_t} x_0 + \eta_t \text{ with } B_t = \int_0^t \beta_s ds \text{ and } \text{Cov}(\eta_t) = (1 - e^{-2B_t})I.$$

### Gaussian assumption

The data distribution is Gaussian:  $p_0 = \mathcal{N}(0,\Sigma)$ .

$$\Rightarrow \nabla \log p_t(x) = -\Sigma_t^{-1} x \quad \text{with } \Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I.$$

# Proposition 1 (Exact solutions of the backward SDEs under Gaussian assumption)

#### Backward SDE

$$dy_t = \beta_{T-t}[y_t + 2\nabla \log p_{T-t}(y_t)]dt + \sqrt{2\beta_{T-t}}dw_t.$$

# Probability flow ODE

$$dy_t = \beta_{T-t}[y_t + \nabla \log p_{T-t}(y_t)]dt$$
.

→ Under the Gaussian assumption, the unique solution is

$$y_t = \Sigma_T^{-1/2} \Sigma_{T-t}^{1/2} y_0$$
.

# Exact 2-Wasserstein errors:

Assuming that the two covariance matrices  $\Sigma_1, \Sigma_2$  are simultaneously diagonalizable with respective eigenvalues  $(\lambda_{i,1})_i$  and  $(\lambda_{i,2})_i$ ,

$$W_2(\mathcal{N}(0,\Sigma_1),\mathcal{N}(0,\Sigma_2))^2 = \sum_i \left(\sqrt{\lambda_{i,1}} - \sqrt{\lambda_{i,2}}\right)^2.$$

# Proposition 2 (Study of the initialization error)

Under Gaussian assumption, denoting  $p_t^{\mathrm{SDE}}$  (resp.  $p_t^{\mathrm{ODE}}$  ) the marginals of the backward SDE (resp. probability flow ODE) with initialization error

$$W_2(p_t^{\text{SDE}}, p_t) \leq W_2(p_t^{\text{ODE}}, p_t)$$
.

# Illustration of three error types

# Theoretical backward process



emile.pierret@univ-orleans.fr

#### Initialization error



#### Truncation error



#### Discretization error



#### Exact Wasserstein errors for the truncation, the initialization and the discretization errors

- Under the Gaussian assumption, we compute exact Wasserstein errors with respect to different error types along the time.
- We illustrate these errors in the two graphs on the right, using the Gaussian fitted to the CIFAR-10 dataset.

#### SDE discretization

- Euler Maruyama (EM)
- Exponential integrator (EI)
- Denoising DiffusionProbabilistic Model (DDPM)

# ODE discretization

- Euler
- Heun
- Runge-Kutta 4 (RK4)





Discretization

# Study of the score approximation: the most crucial practical aspect

- We study the score approximation with a Gaussian distribution of microtextures to produce realistic samples [2].
- The backward equations are discretized with a score learned by a neural network (U-NET).
- We compute empirical Wasserstein errors.
- We provide a comparison based on the FID metric.
- We observe that Heun's scheme is more sensitive to score approximation errors than EM scheme.

|                          | Exact score distribution                          |                                                                          |                                                                     | Learned score distribution                                                                    |                                                                                |
|--------------------------|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| p                        | $\mathbf{W}_{2}(p,\!p_{\mathrm{data}})\downarrow$ | $\mathbf{W}_{2}^{	ext{emp.}}(p^{	ext{emp.}},\!p_{	ext{data}})\downarrow$ | $	ext{FID}(p^{	ext{emp.}},\!p^{	ext{emp.}}_{	ext{data}})\downarrow$ | $\mathbf{W}_{2}^{	ext{emp.}}(p_{	heta}^{	ext{emp.}},\!p_{	ext{data}}^{	ext{emp.}})\downarrow$ | $	ext{FID}(p_{	heta}^{	ext{emp.}},\!p_{	ext{data}}^{	ext{emp.}})$ $\downarrow$ |
| $\overline{\mathrm{EM}}$ | 5.16                                              | 5.16                                                                     | 0.089                                                               | 15.6                                                                                          | 1.02                                                                           |
| Heun                     | 3.73                                              | 3.73                                                                     | 0.045                                                               | 56.7                                                                                          | 19.4                                                                           |

# Various generated samples







# Conclusion

- The probability flow ODE is more affected by the initialization error than the backward SDE.
- The backward SDE is more affected by the discretization error than the probability flow ODE.
- Without score approximation, Heun's scheme is theoretically the go-to method, as already observed empirically [3].
- However, stochastic schemes are more resilient with respect to the score approximation error than deterministic ones.

#### References

- [1] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole. Score-Based Generative Modeling through SDEs. IICLR (2021).
- [2] Bruno Galerne, Yann Gousseau, Jean-Michel Morel. Random Phase Textures: Theory and Synthesis. IEEE Transactions on Image Processing (2010)...
- [3] Tero Karras, Miika Aittala, Timo Aila, Samuli Laine. Elucidating the Design Space of Diffusion-Based Generative Models. Neurips (2022).