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dxt = − βtxtdt + 2βtdwt, 0 ≤ t ≤ T, x0 ∼ p0 .
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Study of the score approximation: the most crucial practical aspect
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Proposition 2 (Study of the initialization error)

Conclusion

Under Gaussian assumption, denoting  (resp.  ) the 
marginals of the backward SDE (resp. probability flow ODE) with 
initialization error
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t pODE

t

W2(pSDE
t , pt) ≤ W2(pODE

t , pt) .

- The probability flow ODE is more affected by the initialization error than the backward SDE.

- The backward SDE is more affected by the discretization error than the probability flow ODE.

- Without score approximation, Heun’s scheme is theoretically the go-to method, as already observed empirically [3].

- However, stochastic schemes are more resilient with respect to the score approximation error than deterministic ones.

Exact 2-Wasserstein errors:

 Under the Gaussian assumption, the strong solution is↪

SDE discretization ODE discretization

• Euler Maruyama (EM)  • Euler 

• Exponential integrator (EI) • Heun

• Denoising Diffusion 
Probabilistic Model  (DDPM)

• Runge-Kutta 4 (RK4)

Exact Wasserstein errors for the truncation, the initialization and the discretization errors

Discretization                 
+ initialization errors

Discretization                    
+ initialization                    
+ truncation errors

p0

pEM
θ

pHeun
θ

•    We study the score approximation with a Gaussian distribution of 
microtextures to produce realistic samples [2].

• The backward equations are discretized with a score learned by a 

neural network (U-NET).

• We compute empirical Wasserstein errors.

• We provide a comparison based on the FID metric.

• We observe that Heun’s scheme is more sensitive to score 

approximation errors than EM scheme.
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We study continuous diffusion models applied to Gaussian data.


• We derive exact solutions to the backward equations (Proposition 1).


• We theoretically study the initialization error (Proposition 2).


• We compute exact Wasserstein errors over time.


• We present an empirical observation of the score approximation error.

Various generated samples

• Under the Gaussian assumption, we compute exact 
Wasserstein errors with respect to different error 
types along the time. 


• We illustrate these errors in the two graphs on the 
right, using the Gaussian fitted to the CIFAR-10 
dataset.

Proposition 1 (Exact solutions of the backward SDEs under 
Gaussian assumption)

with .Σt = e−2BtΣ + (1 − e−2Bt)I

Assuming that the two covariance matrices  are 
simultaneously diagonalizable with respective eigenvalues 

,

Σ1, Σ2

(λi,1)i and (λi,2)i
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Illustration of three error types

The data distribution is Gaussian: .p0 = 𝒩(0,Σ)

  yt = Σ−1/2
T Σ1/2

T−ty0 .

  with  yt = e−(BT−BT−t)ΣT−tΣ−1
T y0 + ξt Cov(ξt) = ΣT−t − e−2(BT−BT−t)Σ2

T−tΣ−1
T .

  with  and ↪ xt = e−Btx0 + ηt Bt = ∫
t

0
βsds Cov(ηt) = (1 − e−2Bt)I .

 Under the Gaussian assumption, the unique solution is↪
  dyt = βT−t[yt + ∇log pT−t(yt)]dt .

 dyt = βT−t[yt + 2∇log pT−t(yt)]dt + 2βT−tdwt .


