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The Asymptotic Discrete Spot Noise (ADSN) model2

Let ΩM,N “ rM s ˆ rN s and U P RΩM,N be a grayscale image,
m its grayscale mean and t “

1?
MN

pU ´ mq its associated
texton. Let W be a white Gaussian noise,

X “ t ‹ W „ ADSNpUq “ N p0,Γq

which is a Gaussian stationary law.
Γ represents the convolution by the kernel γ “ t ‹ qt.

U Samples of ADSNpUq

The zoom-out operator A

Let UHR be an image of RΩM,N , and r be an integer, we suppose that its LR version is
obtained as ULR “ AUHR P RΩM{r,N{r where A “ SC is a convolution C followed by a
subsampling operator S with stride r.

LR image

“ S

Convoluted image

“ SCloomoon
“A

HR image

Kriging reasoning for conditional sampling

For UHR P RΩM,N , its associated model ADSNpUq “ N p0,Γq and ULR “ AUHR,
samples XSR „ ADSNpUq conditioned on AXSR “ ULR have the form:

XSR “ ΛTULR ` pX̃ ´ ΛTAX̃q

with X̃ „ ADSNpUq independent of UHR

and Λ P RΩM{r,N{rˆΩM,N verifying the kriging equation:

AΓATΛ “ AΓ. (1)

LR image HR image SR sample Kriging component Innovation component

ULR UHR XSR ΛTULR X̃ ´ ΛTAX̃

The convolutional form of the kriging equation

Lemma 1 (Convolution and subsampling).AΓAT is a convolution matrix with kernel
κ “ Spc ‹ γ ‹ qcq where c is the kernel of C. Equation (1) becomes on each column of
Λ:

κ ‹ λpk, ℓq “ AΓΩM,Nˆpk,ℓq, k, ℓ P rrs (2)

The structure of the kriging matrix

Let k, ℓ be integers in rrs, let Ωk,ℓ,r
M,N “ tpk` ir, ℓ`jrq, i, j P rM{rs ˆ rN{rsu Ă

ΩM,N be the subgrid of ΩM,N having stride r and starting at pk, ℓq.

Proposition 1 (Structure of the kriging matrix). There exists Λ P

RΩM{r,N{rˆΩM,N solution of Equation (1) such that Y P RΩM{r,N{r ÞÑ ΛTY P

RΩM,N corresponds to a convolution on each of the shifted subgrids Ωk,ℓ,r
M,N,

k, ℓ P rrs. More precisely, Λ is fully determined by its r2 first
columns λpk, ℓq “ ΛΩM{r,N{rˆpk,ℓq, k, ℓ P rrs and

´
ΛTY

¯
pΩk,ℓ,r

M,Nq “ qλpk, ℓq ‹ Y.

Structure of Λ for r “ 2 and M “ N “ 6.
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Pseudo-code of Gaussian SR

•Exact sampling using Gaussian conditional sampling.

•Efficient computations in Fourier exploiting the stationarity assumption
and the form of the operator.

•The kriging matrix Λ could be stored to generate several samples.

Input: An image ULR P RΩM{r,N{r, r the zoom factor, t the convolution kernel of
the ADSN model, c the kernel of the convolution of the zoom-out operator A “

SC

1: Step 1: Computation of kriging matrix Λ
2: Store perptq the periodic component of t
3: Store the convolution kernels γ “ perptq ‹ pqerptq, c ‹ γ and κ “ c ‹ γ ‹ qc
4: for pk, ℓq P rrs2 do

5: pb “ F2

´
Sppc ‹ γqp¨ ´ k, ¨ ´ ℓqq

¯

6: pλpk, ℓq rpκ ‰ 0s Ð
pbrpκ‰0s

pκrpκ‰0s
7: end for
8: Step 2: Sampling of one SR version of ULR
9: Generate W P RΩM,N following a Gaussian standard law
10: X̃ Ð t ‹ W
11: X̃LR Ð AX̃
12: for each shifted subgrid by pk, ℓq P rrs2 do

13: XSRpΩ
k,ℓ,r
M,Nq Ð F ´1

2

´
p pULR ´ X̃LRq d pλpk, ℓq

¯
` X̃pΩ

k,ℓ,r
M,Nq

14: end for
15: Output: XSR

Comparaison with other methods

•The HR image size is respectively 208ˆ208 and 256ˆ256 and the factor r “ 8.

•The ADSN model is extracted from a reference image.

•For stochastic Gaussian SR and SRFlow, the table has been realized on 200 samples.

•Our method outperforms in terms of the perceptual LPIPS metric and execution time.

•PSNR and SSIM are optimal for blurry images.

LR image Reference image HR image Kriging component Bicubic SRFlow3 (τ “ 0)

Evaluation metrics Gaussian SR (ours) WPP4 SRFlow3 (τ “ 0.9)

PSNR (dB) Ò SSIM Ò LPIPS Ó TIME (s)

Kriging component 28.42 0.56 0.69

Bicubic 30.21 0.65 0.54

SRFlow3
pτ “ 0q 28.55 0.54 0.63 0.47 (GPU)

Gaussian SR (ours) 26.25 ˘ 0.05 0.42 ˘ 0.00 0.12 ˘ 0.01 0.01 (CPU)

WPP4 24.70 0.39 0.22 64.0 (GPU)

SRFlow3
pτ “ 0.9q 27.33 ˘ 0.34 0.48 ˘ 0.02 0.20 ˘ 0.03 0.47 (GPU)

LR image Reference image HR image Kriging component Bicubic SRFlow3 (τ “ 0)

Evaluation metrics Gaussian SR (ours) WPP4 SRFlow3 (τ “ 0.9)

PSNR (dB) Ò SSIM Ò LPIPS Ó TIME (s)

Kriging component 21.78 0.24 0.87

Bicubic 23.52 0.45 0.70

SRFlow3
pτ “ 0q 21.84 0.24 0.87 0.55 (GPU)

Gaussian SR (ours) 18.99 ˘ 0.05 0.14 ˘ 0.01 0.25 ˘ 0.01 0.02 (CPU)

WPP4 21.12 0.21 0.42 77.0 (GPU)

SRFlow3
pτ “ 0.9q 18.99 ˘ 0.38 0.14 ˘ 0.01 0.39 ˘ 0.04 0.55 (GPU)

Conclusion

• Super-resolution is performed in a well-based mathematical framework.

•An efficient sampler can be computed due to the stationarity assumption.

•The same routine could be used for other operators of the form convolution followed by
subsampling.
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