

Stochastic super-resolution for Gaussian textures¹

Emile Pierret^a, Bruno Galerne^{a,b}

^aInstitut Denis Poisson – Université d'Orléans, Université de Tours, CNRS ^bInstitut universitaire de France (IUF)

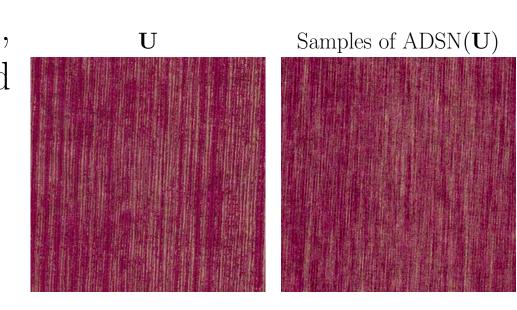
The Asymptotic Discrete Spot Noise (ADSN) model²

Let $\Omega_{M,N} = [M] \times [N]$ and $\mathbf{U} \in \mathbb{R}^{\Omega_{M,N}}$ be a grayscale image, m its grayscale mean and $\mathbf{t} = \frac{1}{\sqrt{MN}}(\mathbf{U} - m)$ its associated texton. Let \mathbf{W} be a white Gaussian noise,

$$\mathbf{X} = \mathbf{t} \star \mathbf{W} \sim \mathrm{ADSN}(\mathbf{U}) = \mathscr{N}(\mathbf{0}, \mathbf{\Gamma})$$

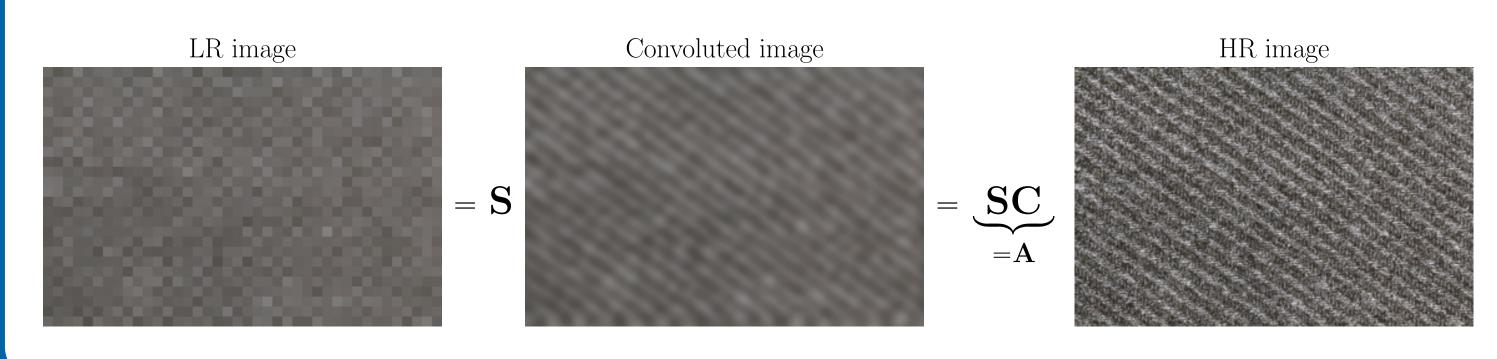
which is a Gaussian **stationary** law.

 Γ represents the convolution by the kernel $\gamma = \mathbf{t} \star \check{\mathbf{t}}$.



The zoom-out operator A

Let \mathbf{U}_{HR} be an image of $\mathbb{R}^{\Omega_{M,N}}$, and r be an integer, we suppose that its LR version is obtained as $\mathbf{U}_{LR} = \mathbf{A}\mathbf{U}_{HR} \in \mathbb{R}^{\Omega_{M/r,N/r}}$ where $\mathbf{A} = \mathbf{S}\mathbf{C}$ is a convolution \mathbf{C} followed by a subsampling operator \mathbf{S} with stride r.



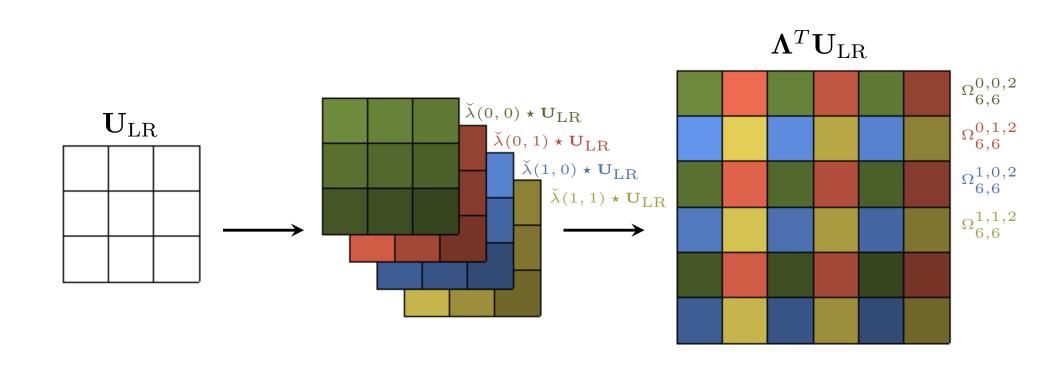
The structure of the kriging matrix

Let k, ℓ be integers in [r], let $\Omega_{M,N}^{k,\ell,r} = \{(k+ir, \ell+jr), i, j \in [M/r] \times [N/r]\} \subset \Omega_{M,N}$ be the subgrid of $\Omega_{M,N}$ having stride r and starting at (k,ℓ) .

Proposition 1 (Structure of the kriging matrix). There exists $\Lambda \in \mathbb{R}^{\Omega_{M/r,N/r} \times \Omega_{M,N}}$ solution of Equation (1) such that $\mathbf{Y} \in \mathbb{R}^{\Omega_{M/r,N/r}} \mapsto \Lambda^T \mathbf{Y} \in \mathbb{R}^{\Omega_{M,N}}$ corresponds to a convolution on each of the shifted subgrids $\Omega_{M,N}^{k,\ell,r}$, $k,\ell \in [r]$. More precisely, Λ is **fully determined by its r^2 first columns** $\lambda(k,\ell) = \Lambda_{\Omega_{M/r,N/r} \times (k,\ell)}$, $k,\ell \in [r]$ and

$$\left(\mathbf{\Lambda}^T\mathbf{Y}\right)\left(\Omega_{M,N}^{k,\ell,r}\right) = \widecheck{\boldsymbol{\lambda}}(k,\ell) \star \mathbf{Y}.$$

Structure of Λ for r=2 and M=N=6.



Kriging reasoning for conditional sampling

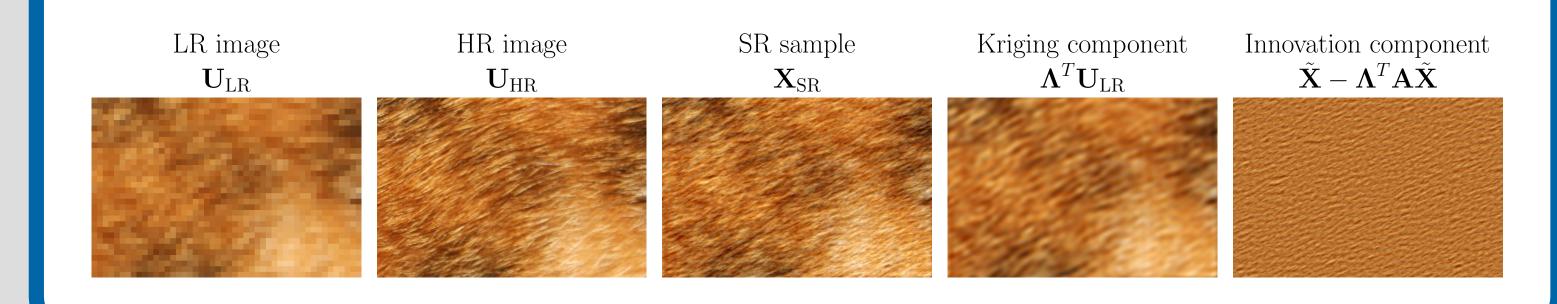
For $\mathbf{U}_{HR} \in \mathbb{R}^{\Omega_{M,N}}$, its associated model $\mathrm{ADSN}(\mathbf{U}) = \mathscr{N}(\mathbf{0}, \mathbf{\Gamma})$ and $\mathbf{U}_{LR} = \mathbf{A}\mathbf{U}_{HR}$, samples $\mathbf{X}_{SR} \sim \mathrm{ADSN}(\mathbf{U})$ conditioned on $\mathbf{A}\mathbf{X}_{SR} = \mathbf{U}_{LR}$ have the form:

$$\mathbf{X}_{\mathrm{SR}} = \mathbf{\Lambda}^T \mathbf{U}_{\mathrm{LR}} + (\tilde{\mathbf{X}} - \mathbf{\Lambda}^T \mathbf{A} \tilde{\mathbf{X}})$$

with $\tilde{\mathbf{X}} \sim \mathrm{ADSN}(\mathbf{U})$ independent of \mathbf{U}_{HR}

and $\Lambda \in \mathbb{R}^{\Omega_{M/r,N/r} \times \Omega_{M,N}}$ verifying the **kriging equation**:

$$\mathbf{A}\mathbf{\Gamma}\mathbf{A}^{T}\mathbf{\Lambda} = \mathbf{A}\mathbf{\Gamma}.\tag{1}$$



The convolutional form of the kriging equation

Lemma 1 (Convolution and subsampling). $\mathbf{A}\mathbf{\Gamma}\mathbf{A}^T$ is a convolution matrix with kernel $\boldsymbol{\kappa} = \mathbf{S}(\mathbf{c} \star \boldsymbol{\gamma} \star \check{\mathbf{c}})$ where \mathbf{c} is the kernel of \mathbf{C} . Equation (1) becomes on each column of $\boldsymbol{\Lambda}$:

$$\kappa \star \lambda(k,\ell) = \mathbf{A}\Gamma_{\Omega_{M,N}\times(k,\ell)}, \quad k,\ell \in [r]$$
 (2)

Pseudo-code of Gaussian SR

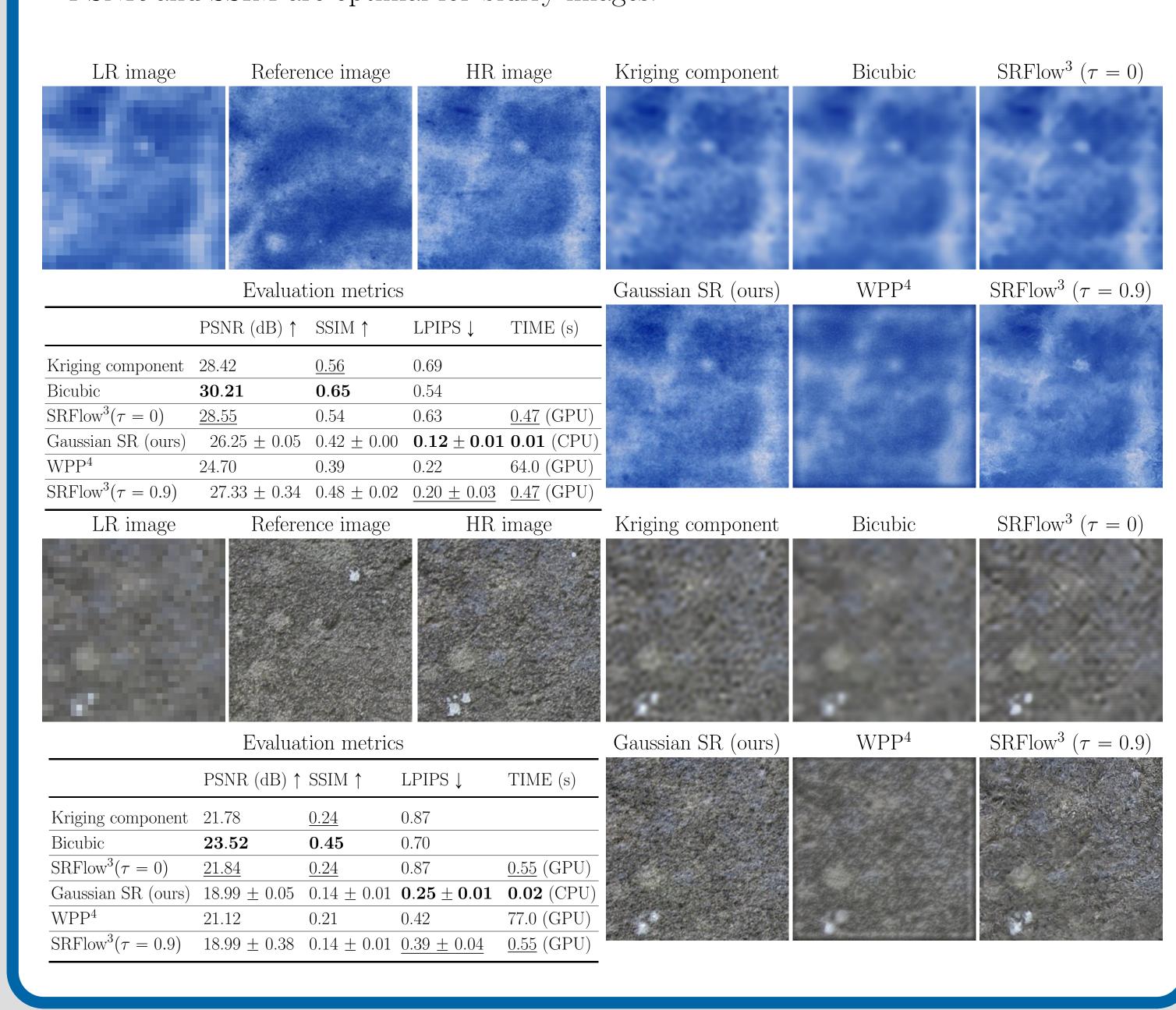
- Exact sampling using Gaussian conditional sampling.
- Efficient computations in Fourier exploiting the stationarity assumption and the form of the operator.
- The kriging matrix Λ could be stored to generate several samples.

Input: An image $\mathbf{U}_{LR} \in \mathbb{R}^{\Omega_{M/r,N/r}}$, r the zoom factor, \mathbf{t} the convolution kernel of the ADSN model, \mathbf{c} the kernel of the convolution of the zoom-out operator $\mathbf{A} = \mathbf{SC}$

- 1: **Step 1:** Computation of kriging matrix Λ
- 2: Store $\mathbf{per}(\mathbf{t})$ the periodic component of \mathbf{t}
- 3: Store the convolution kernels $\gamma = \mathbf{per}(\mathbf{t}) \star \mathbf{per}(\mathbf{t})$, $\mathbf{c} \star \gamma$ and $\kappa = \mathbf{c} \star \gamma \star \mathbf{c}$
- for $(k,\ell) \in [r]^2$ do
- 5: $\hat{\mathbf{b}} = \mathscr{F}_2 \Big(\mathbf{S}((\mathbf{c} \star \boldsymbol{\gamma})(\cdot k, \cdot \ell)) \Big)$
- $\hat{\boldsymbol{\lambda}}(k,\ell) \left[\hat{\boldsymbol{\kappa}} \neq 0 \right] \leftarrow \frac{\hat{\mathbf{b}} \left[\hat{\boldsymbol{\kappa}} \neq 0 \right]}{\hat{\boldsymbol{\kappa}} \left[\hat{\boldsymbol{\kappa}} \neq 0 \right]}$
- 7: **end for**
- Step 2: Sampling of one SR version of U_{LR}
- 9: Generate $\mathbf{W} \in \mathbb{R}^{\Omega_{M,N}}$ following a Gaussian standard law
- 10: $\mathbf{X} \leftarrow \mathbf{t} \star \mathbf{W}$
- 11: $\mathbf{X}_{LR} \leftarrow \mathbf{A}\mathbf{X}$
- 12: **for** each shifted subgrid by $(k, \ell) \in [r]^2$ **do**
- 13: $\mathbf{X}_{\mathrm{SR}}(\Omega_{M,N}^{k,\ell,r}) \leftarrow \mathscr{F}_{2}^{-1}\left((\widehat{\mathbf{U}}_{\mathrm{LR}} \widetilde{\mathbf{X}}_{\mathrm{LR}}) \odot \overline{\widehat{\boldsymbol{\lambda}}(k,\ell)}\right) + \widetilde{\mathbf{X}}(\Omega_{M,N}^{k,\ell,r})$
- 14: **end for**
- 5: Output: \mathbf{X}_{SR}

Comparaison with other methods

- The HR image size is respectively 208×208 and 256×256 and the factor r = 8.
- The ADSN model is extracted from a reference image.
- For stochastic Gaussian SR and SRFlow, the table has been realized on 200 samples.
- Our method outperforms in terms of the perceptual LPIPS metric and execution time.
- PSNR and SSIM are optimal for blurry images.



Conclusion

- Super-resolution is performed in a well-based mathematical framework.
- An efficient sampler can be computed due to the stationarity assumption.
- The same routine could be used for other operators of the form convolution followed by subsampling.

References

¹Pierret, É., & Galerne, B. (2023). Stochastic super-resolution for gaussian textures. *ICASSP 2023*²Galerne, B., Gousseau, Y., & Morel, J.-M. (2011). Random Phase Textures: Theory and Synthesis. *IEEE Transactions on*

³Lugmayr, A., Danelljan, M., Van Gool, L., & Timofte, R. (2020). SRFlow: Learning the Super-Resolution Space with Normalizing Flow. *ECCV* 2020

⁴Hertrich, J., Houdard, A., & Redenbach, C. (2022). Wasserstein Patch Prior for Image Superresolution. *IEEE Transactions on Computational Imaging*