Introduction to diffusion models for image generation and inpainting Émile Pierret, supervised by Bruno Galerne July, 5th Institut Denis Poisson - Université d'Orléans, Université de Tours, CNRS #### Introduction on generative models #### Presentation of the diffusion models - 2.1. The forward process - 2.2. The backward process - 2.3. The continuous framework - 2.4. Conclusion #### Presentation of RePaint - 3.1. Conditional diffusion models - 3.2. Presentation of the article Introduction on generative models # What is a generative model ? ## Previously in the working group... ### 22/09 : Variational Auto-Encoder (VAE): ${\it Image\ extracted\ from\ https://medium.com/@elzettevanrensburg/} generating-the-intuition-behind-variational-auto-encoders-vaes-c7d2f8631a87$ ### Previously in the working group... ### 25/10: Generative Aversarial Netowrk (GAN): Image extracted from https://www.microsoft.com/en-us/research/blog/how-can-generative-adversarial-networks-learn-real-life-distributions-easily/ ## Main idea 6 / 64 #### To the diffusion models Image extrated from [Xiao et al., 2022]¹ • Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. *Advances in Neural Information Processing Systems* ¹Xiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion GANs. International Conference on Learning Representations Presentation of the diffusion models ### Samples from diffusion models Images extracted from [Dhariwal and Nichol, 2021]² from a model trained on ImageNet. ²Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems # Home-made with the code of Lugmayr et al., 2022³ **NB:** 100s for 10 samples. ³Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. RePaint ### Stable diffusion⁴ A young mathematician presenting diffusion models to his colleagues $^{^{4} {\}tt https://huggingface.co/spaces/stabilityai/stable-diffusion}$ ### Stable diffusion⁵ A young mathematician sadly discovers that he should study stochastic differential equations for his thesis. ⁵https://huggingface.co/spaces/stabilityai/stable-diffusion Image extracted from [Y. Song et al., 2023] 13 / 64 13 / 64 13 / 64 Let $x \in \mathbb{R}^{3 \times M \times N}$ be an image, sample from p_{data} . We denote $p_0 := p_{\mathsf{data}}$. Our objective is to transform p_0 into $p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$ with T steps. I will present the process presented in DDPM [Ho et al., 2020]⁶. Let $m{x} \in \mathbb{R}^{3 imes M imes N}$ be an image, sample from $p_{\mathsf{data}}.$ We denote $p_0 := p_{\mathsf{data}}.$ Our objective is to transform p_0 into $p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$ with T steps. I will present the process presented in DDPM [Ho et al., 2020]⁶. Let $(\beta_t)_{0 \le t \le T}$ be an increasing sequence of real numbers in [0,1]. Let $\alpha_t = 1 - \beta_t$, we would like to construct $(\boldsymbol{x}_t)_{0 \le t \le T}$. ⁶Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems Let $m{x} \in \mathbb{R}^{3 imes M imes N}$ be an image, sample from $p_{\mathsf{data}}.$ We denote $p_0 := p_{\mathsf{data}}.$ Our objective is to transform p_0 into $p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$ with T steps. I will present the process presented in DDPM [Ho et al., 2020]⁶. Let $(\beta_t)_{0 \le t \le T}$ be an increasing sequence of real numbers in [0,1]. Let $\alpha_t = 1 - \beta_t$, we would like to construct $(x_t)_{0 \le t \le T}$. For all $t \ge 1$, $$m{x}_t = \sqrt{1-eta_t}m{x}_{t-1} + \sqrt{eta_t}m{arepsilon}_t, \ ext{with} \ m{arepsilon}_t \sim \mathcal{N}(m{0},m{I})$$ ⁶Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems Let $m{x} \in \mathbb{R}^{3 \times M \times N}$ be an image, sample from $p_{\mathsf{data}}.$ We denote $p_0 := p_{\mathsf{data}}.$ Our objective is to transform p_0 into $p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$ with T steps. I will present the process presented in DDPM [Ho et al., 2020]⁶. Let $(\beta_t)_{0 \le t \le T}$ be an increasing sequence of real numbers in [0,1]. Let $\alpha_t = 1 - \beta_t$, we would like to construct $(\boldsymbol{x}_t)_{0 \le t \le T}$. For all $t \ge 1$, $$m{x}_t = \sqrt{1-eta_t}m{x}_{t-1} + \sqrt{eta_t}m{arepsilon}_t, \ ext{with} \ m{arepsilon}_t \sim \mathcal{N}(m{0},m{I})$$ Denoting $\alpha_t = 1 - \beta_t$ $$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_t$$, with $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ⁶Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems Let $x \in \mathbb{R}^{3 \times M \times N}$ be an image, sample from p_{data} . We denote $p_0 := p_{\mathsf{data}}$. Our objective is to transform p_0 into $p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$ with T steps. I will present the process presented in DDPM [Ho et al., 2020]⁶. Let $(\beta_t)_{0 \le t \le T}$ be an increasing sequence of real numbers in [0,1]. Let $\alpha_t = 1 - \beta_t$, we would like to construct $(x_t)_{0 \le t \le T}$. For all $t \ge 1$, $$m{x}_t = \sqrt{1-eta_t}m{x}_{t-1} + \sqrt{eta_t}m{arepsilon}_t, ext{ with } m{arepsilon}_t \sim \mathcal{N}(m{0},m{I})$$ Denoting $\alpha_t = 1 - \beta_t$ $$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_t$$, with $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ Other formulation: $$\boldsymbol{x}_t \sim \mathcal{N}(\boldsymbol{x}_t; \sqrt{1-\alpha_t} \boldsymbol{x}_{t-1}, \beta_t \boldsymbol{I})$$ ⁶Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems* Denoting $\overline{\alpha}_t = \prod_{s=1}^t \alpha_s$, For $t \geqslant 1$, $$\boldsymbol{x}_t \sim \mathcal{N}(\boldsymbol{x}_t; \sqrt{\overline{\alpha}}_t \boldsymbol{x}_0, (1 - \overline{\alpha}_t) \boldsymbol{I})$$ In other words, x_t can be expressed as $$m{x}_t = \sqrt{\overline{lpha}}_t m{x}_0 + \sqrt{1-\overline{lpha}_t} m{z}_t, \; ext{with} \; m{z}_t \sim \mathscr{N}(m{0}, m{I})$$ #### Example: If $$oldsymbol{x}_1 = \sqrt{lpha}_1 oldsymbol{x}_0 + \sqrt{1-lpha_1} oldsymbol{arepsilon}_1$$, $$x_2 = \sqrt{\alpha_2} x_1 + \sqrt{1 - \alpha_2} \varepsilon_2$$ $$= \sqrt{\alpha_2} \sqrt{\alpha_1} x_0 + \sqrt{\alpha_2} \sqrt{1 - \alpha_1} \varepsilon_1 + \sqrt{1 - \alpha_2} \varepsilon_2$$ $$= \sqrt{\overline{\alpha_2}} x_0 + (\sqrt{1 - \alpha_1} \varepsilon_1 + \sqrt{1 - \alpha_2} \varepsilon_2)$$ And: $$(\sqrt{1-\alpha_1}\boldsymbol{\varepsilon}_1 + \sqrt{1-\alpha_2}\boldsymbol{\varepsilon}_2) \sim \mathcal{N}(\mathbf{0}, \alpha_2(1-\alpha_1) + 1 - \alpha_2) = \mathcal{N}(\mathbf{0}, 1-\overline{\alpha}_2)$$ ### The forward decomposition The forward decomposition is: $$q(\boldsymbol{x}_{0:T}) = q(\boldsymbol{x}_0) \prod_{t=1}^T q(\boldsymbol{x}_t \mid \boldsymbol{x}_{t-1})$$ And we denote p_t the law of x_t . To keep in mind: Conditioning on x_0 , all is possible. 2.2. The backward process ### The backward process ⁷Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer ## The backward process $q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_0, \boldsymbol{x}_t)$ is tractable. For example, see [Bishop, 2006]⁷ ⁷Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer ## The backward process $q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_0, \boldsymbol{x}_t)$ is tractable. For example, see [Bishop, 2006]⁷ $$\begin{split} \boldsymbol{x}_{t-1} &\sim \mathcal{N}(\boldsymbol{x}_{t-1}; \tilde{\mu}_t(\boldsymbol{x}_t, \boldsymbol{x}_0), \tilde{\beta}_t \boldsymbol{I}) \\ \text{with} &\quad \tilde{\mu}_t(\boldsymbol{x}_t, \boldsymbol{x}_0) = \frac{\sqrt{\overline{\alpha}_{t-1}}}{1 - \overline{\alpha}_t} \beta_t \boldsymbol{x}_0 + \frac{\sqrt{\alpha_t} (1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} \boldsymbol{x}_t \\ &\quad \tilde{\beta}_t = \frac{1 - \overline{\alpha}_{t-1}}{1 - \overline{\alpha}_t} \beta_t \end{split}$$ ⁷Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer The backward probability p_{θ} $$p_{\theta}(x_{0:T}) = p_{\theta}(\boldsymbol{x}_T) \prod_{t=1}^{T} p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t)$$ We will suppose that $p_{\theta}(x_{t-1} \mid x_t)$ is Gaussian. [Feller, 1949]⁸. This can be also explained in the discrete case by [De Bortoli et al., 2021]9. $$p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t) = \mathcal{N}(\mu_{\theta}(\boldsymbol{x}_t, t), \Sigma_{\theta}(\boldsymbol{x}_t))$$ Systems ⁸ Feller, W. (1949). On the theory of stochastic processes, with particular reference to applications. Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability 9 De Bortoli V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion schrödinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing ## Derivation of the ELBO [Sohl-Dickstein et al., 2015] $$\begin{split} \log p_{\theta}(\boldsymbol{x}_0) &= \log \int p_{\theta}(\boldsymbol{x}_{0:T}) d\boldsymbol{x}_{1:T} \\ &= \log \int \frac{p_{\theta}(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0)} q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0) d\boldsymbol{x}_{1:T} \\ &\geqslant \int \log \frac{p_{\theta}(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0)} q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0) d\boldsymbol{x}_{1:T} \text{ by Jensen's inequality} \end{split}$$ Consequently, $$\mathbb{E}_{\boldsymbol{x}_0 \sim p_0} \left[\log p_{\theta}(\boldsymbol{x}_0) \right] \geqslant \int \int \log
\frac{p_{\theta}(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0)} q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0) q(\boldsymbol{x}_0) d\boldsymbol{x}_{1:T} d\boldsymbol{x}_0$$ $$= \int \log \frac{p_{\theta}(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0)} q(\boldsymbol{x}_{0:T}) d\boldsymbol{x}_{0:T}$$ $$= \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q} \left[\log \frac{p_{\theta}(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_0)} \right]$$ # Derivation of the ELBO [Sohl-Dickstein et al., 2015] By the forward and the backward decompositions, $$\log \frac{p_{\theta}(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_{0})} = \log \left[p_{\theta}(\boldsymbol{x}_{T}) \prod_{t=1}^{T} \frac{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1})} \right]$$ $$= \log p_{\theta}(\boldsymbol{x}_{T}) + \sum_{t=1}^{T} \log \frac{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1})}$$ #### Consequently: $$\begin{split} & \mathbb{E}_{\boldsymbol{x}_{0} \sim p_{0}}[\log p_{\theta}(\boldsymbol{x}_{0})] \\ & \geqslant \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log p_{\theta}(\boldsymbol{x}_{T})\right] + \sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log \frac{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1})}\right] \\ & = \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log p_{\theta}(\boldsymbol{x}_{T})\right] + \sum_{t=2}^{T} \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log \frac{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{x}_{0})} \frac{q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{0})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0})}\right] + \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log \frac{p_{\theta}(\boldsymbol{x}_{0} \mid \boldsymbol{x}_{1})}{q(\boldsymbol{x}_{1} \mid \boldsymbol{x}_{0})}\right] \\ & = \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log \frac{p_{\theta}(\boldsymbol{x}_{T})}{q(\boldsymbol{x}_{T} \mid \boldsymbol{x}_{0})}\right] + \sum_{t=2}^{T} \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log \frac{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{x}_{0})}\right] + \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q}\left[\log p_{\theta}(\boldsymbol{x}_{0} \mid \boldsymbol{x}_{1})\right] \end{split}$$ ## Derivation of the ELBO [Sohl-Dickstein et al., 2015] For $2 \le t \le T$. $$\mathbb{E}_{\boldsymbol{x}_{0:T}} \left[\log \frac{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})}{q(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{x}_{0})} \right] = -\int \log \left(\frac{q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0})}{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})} \right) q(\boldsymbol{x}_{0:T}) d\boldsymbol{x}_{0:T} \\ = -\int \log \left(\frac{q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0})}{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})} \right) q(\boldsymbol{x}_{0,t-1,t}) d\boldsymbol{x}_{0,t-1,t} \\ = -\int \log \left(\frac{q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0})}{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})} \right) q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0}) q(\boldsymbol{x}_{t}, \boldsymbol{x}_{0}) d\boldsymbol{x}_{0,t-1,t} \\ = -\int \left(\int \log \left(\frac{q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0})}{p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t})} \right) q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0}) d\boldsymbol{x}_{t-1} \right) q(\boldsymbol{x}_{t}, \boldsymbol{x}_{0}) d\boldsymbol{x}_{0,t} \\ = -\mathbb{E}_{\boldsymbol{x}_{t}, \boldsymbol{x}_{0} \sim q} \left[\mathbb{D}_{KL} \left(q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{x}_{0}) \| p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}) \right) \right]$$ 23 / 64 ## Derivation of the ELBO [Sohl-Dickstein et al., 2015] Finally, $$\begin{split} & \mathbb{E}_{\boldsymbol{x}_0 \sim p_0} \left[\log p_{\theta}(\boldsymbol{x}_0) \right] \\ & \geqslant -\mathbb{E}_{\boldsymbol{x}_0} \left[\mathsf{D}_{KL} (q(\boldsymbol{x}_T \mid \boldsymbol{x}_0) \| p_{\theta}(\boldsymbol{x}_T)) \right] - \sum_{t=2}^{T} \mathbb{E}_{\boldsymbol{x}_t, \boldsymbol{x}_0 \sim q} \left[\mathsf{D}_{KL} \left(q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \boldsymbol{x}_0) \| p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t) \right) \right] \\ & + \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_1} \left[\log p_{\theta}(\boldsymbol{x}_0 \mid \boldsymbol{x}_1) \right] \end{split}$$ For $2 \leq t \leq T$, we are looking for $D_{KL}(q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \boldsymbol{x}_0) || p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t))$, By [Zhang et al., 2021]¹⁰. $$\mathsf{D}_{KL}(\mathcal{N}(\mu_1, \Sigma_1), \mathcal{N}(\mu_2, \Sigma_2)) = \frac{1}{2} \left[\log \frac{|\Sigma_2|}{|\Sigma_1|} + \operatorname{Tr}(\Sigma_2^{-1} \Sigma_1) + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) - n \right]$$ As a reminder. $$\boldsymbol{x}_{t-1} \sim \mathcal{N}(\boldsymbol{x}_{t-1}; \tilde{\mu}_t(\boldsymbol{x}_t, \boldsymbol{x}_0), \tilde{\beta}_t \boldsymbol{I})$$ If we suppose that $p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$ and $\Sigma_{\theta}(x_t, t) = \tilde{\beta}_t I$. $$\mathsf{D}_{KL}\left(q(\boldsymbol{x}_{t-1}\mid\boldsymbol{x}_{t},\boldsymbol{x}_{0})\|p_{\theta}(\boldsymbol{x}_{t-1}\mid\boldsymbol{x}_{t})\right) = \frac{1}{2\tilde{\beta}_{t}^{2}}\|\tilde{\mu}_{t}(\boldsymbol{x}_{t},x_{0}) - \mu_{\theta}(\boldsymbol{x}_{t},t)\|^{2}$$ 25 / 64 ¹⁰Zhang, Y., Liu, W., Chen, Z., Li, K., & Wang, J. (2021). On the properties of kullback-leibler divergence between gaussians. CoRR, abs/2102.05485. https://arxiv.org/abs/2102.05485 For t=T, $\mathbb{E}_{\boldsymbol{x}_0}\left[\mathsf{D}_{KL}(q(\boldsymbol{x}_T\mid \boldsymbol{x}_0)\|p_{\theta}(\boldsymbol{x}_T))\right]$ is neglected because $$q(\boldsymbol{x}_T \mid \boldsymbol{x}_0) = \mathcal{N}(\mathbb{E}(\boldsymbol{x}_0), \sqrt{1 - \overline{\alpha}_T} \operatorname{Var}(\boldsymbol{x}_0)) \approx \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$ For t = 0, $\mu_t heta(\mathbf{x}_1, 1)$ is penalized to obtain data images in [0, 1] The loss is finally, $$L(\theta) = \sum_{t=2}^{T} \frac{1}{2\tilde{\beta}_t^2} \|\tilde{\mu}_t(\boldsymbol{x}_t, x_0) - \mu_{\theta}(\boldsymbol{x}_t, t)\|^2 - \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{x}_1} \left[\log p_{\theta}(\boldsymbol{x}_0 \mid \boldsymbol{x}_1)\right]$$ **Problem:** This loss is difficult to train, even for 2D distribution (see tutorials at this url¹¹) ¹¹https://github.com/acids-ircam/diffusion_models Denoting $$x_t = \sqrt{\overline{\alpha}_t}x_0 + \sqrt{1-\overline{\alpha}_t}\varepsilon$$ with $\varepsilon_t \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$, $$L_{t-1} = \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{\varepsilon}} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{\varepsilon}) - \frac{\beta_t}{\sqrt{1 - \overline{\alpha}_t}} \boldsymbol{\varepsilon} \right) - \mu_{\theta}(\boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{\varepsilon}), t) \right\|^2 \right].$$ Denoting $$x_t = \sqrt{\overline{\alpha}_t}x_0 + \sqrt{1-\overline{\alpha}_t}\varepsilon$$ with $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $$L_{t-1} = \mathbb{E}_{x_0,\varepsilon} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(x_t(x_0,\varepsilon) - \frac{\beta_t}{\sqrt{1-\overline{\alpha_t}}} \varepsilon \right) - \mu_{\theta}(x_t(x_0,\varepsilon),t) \right\|^2 \right].$$ $$\mu_{\theta}(x_t,t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t(x_0,\varepsilon) - \frac{\beta_t}{\sqrt{1-\overline{\alpha_t}}} \varepsilon_{\theta}(x_t,t) \right)$$ $$\Longleftrightarrow$$ $$\varepsilon_{\theta}(x_t,t) = \frac{\sqrt{1-\overline{\alpha_t}}}{\beta_t} \left(x_t - \sqrt{\alpha_t} \mu_{\theta}(x_t,t) \right)$$ Denoting $x_t = \sqrt{\overline{\alpha}_t}x_0 + \sqrt{1-\overline{\alpha}_t}\varepsilon$ with $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $$L_{t-1} = \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{\varepsilon}} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{\varepsilon}) - \frac{\beta_t}{\sqrt{1 - \overline{\alpha_t}}} \boldsymbol{\varepsilon} \right) - \mu_{\theta}(\boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{\varepsilon}), t) \right\|^2 \right].$$ $$\mu_{\theta}(\boldsymbol{x}_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{\varepsilon}) - \frac{\beta_t}{\sqrt{1 - \overline{\alpha_t}}} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t) \right)$$ $$\iff$$ $$\boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t) = \frac{\sqrt{1 - \overline{\alpha_t}}}{\beta_t} \left(\boldsymbol{x}_t - \sqrt{\alpha_t} \mu_{\theta}(\boldsymbol{x}_t, t) \right)$$ $$L_{t-1} = \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{\varepsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \overline{\alpha_t})} \left\| \boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{\varepsilon})) \right\|^2 \right].$$ Denoting ${m x}_t = \sqrt{\overline{lpha}_t} {m x}_0 + \sqrt{1-\overline{lpha}_t} {m arepsilon}$ with ${m arepsilon}_t \sim \mathcal{N}({m 0},{m I})$, $$\begin{split} L_{t-1} &= \mathbb{E}_{\boldsymbol{x}_0,\varepsilon} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}_t(\boldsymbol{x}_0,\varepsilon) - \frac{\beta_t}{\sqrt{1-\overline{\alpha_t}}}\varepsilon \right) - \mu_{\theta}(\boldsymbol{x}_t(\boldsymbol{x}_0,\varepsilon),t) \right\|^2 \right]. \\
\mu_{\theta}(\boldsymbol{x}_t,t) &= \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x}_t(\boldsymbol{x}_0,\varepsilon) - \frac{\beta_t}{\sqrt{1-\overline{\alpha_t}}}\varepsilon_{\theta}(\boldsymbol{x}_t,t) \right) \\ &\Longleftrightarrow \\ \varepsilon_{\theta}(\boldsymbol{x}_t,t) &= \frac{\sqrt{1-\overline{\alpha_t}}}{\beta_t} \left(\boldsymbol{x}_t - \sqrt{\alpha_t}\mu_{\theta}(\boldsymbol{x}_t,t) \right) \\ L_{t-1} &= \mathbb{E}_{\boldsymbol{x}_0,\varepsilon} \left[\frac{\beta_t^2}{2\sigma_t^2\alpha_t(1-\overline{\alpha_t})} \left\| \varepsilon - \varepsilon_{\theta}(\boldsymbol{x}_t(\boldsymbol{x}_0,\varepsilon),t) \right\|^2 \right]. \\ L_{\text{simple}}(\theta) &= \mathbb{E}_{t,\boldsymbol{x}_0,\varepsilon} \left[\left\| \varepsilon - \varepsilon_{\theta}(\boldsymbol{x}_t(\boldsymbol{x}_0,\varepsilon),t) \right\|^2 \right]. \end{split}$$ To convince yourself: Residual learning for denoiser. ## Discrete backward process The backward process becomes: $$egin{aligned} oldsymbol{x}_T &\sim \mathscr{N}(oldsymbol{0}, oldsymbol{I}) \ oldsymbol{x}_{t-1} &= rac{1}{\sqrt{lpha_t}} \left(oldsymbol{x}_t - rac{1-lpha_t}{\sqrt{1-\overline{lpha}_t}} oldsymbol{arepsilon}_{ heta}(oldsymbol{x}_t, t) ight) + ilde{eta}_t oldsymbol{z}_t \ ext{with} \ oldsymbol{z}_t &\sim \mathscr{N}(oldsymbol{0}, oldsymbol{I}) \end{aligned}$$ ## Discrete backward process The backward process becomes: $$egin{aligned} oldsymbol{x}_T &\sim \mathscr{N}(oldsymbol{0}, oldsymbol{I}) \ oldsymbol{x}_{t-1} &= rac{1}{\sqrt{lpha_t}} \left(oldsymbol{x}_t - rac{1 - lpha_t}{\sqrt{1 - \overline{lpha}_t}} oldsymbol{arepsilon}_{ heta}(oldsymbol{x}_t, t) ight) + ilde{eta}_t oldsymbol{z}_t \ ext{with} \ oldsymbol{z}_t \sim \mathscr{N}(oldsymbol{0}, oldsymbol{I}) \end{aligned}$$ Ho et al., 2020 has the same results with: $$egin{aligned} oldsymbol{x}_T &\sim \mathscr{N}(oldsymbol{0}, oldsymbol{I}) \ oldsymbol{x}_{t-1} &= rac{1}{\sqrt{lpha_t}} \left(oldsymbol{x}_t - rac{1 - lpha_t}{\sqrt{1 - \overline{lpha_t}}} oldsymbol{arepsilon}_{ heta}(oldsymbol{x}_t, t) ight) + eta_t oldsymbol{z}_t ext{ with } oldsymbol{z}_t \sim \mathscr{N}(oldsymbol{0}, oldsymbol{I}) \end{aligned}$$ As a reminder, $\tilde{\beta}_t = \frac{1-\overline{\alpha}_{t-1}}{1-\overline{\alpha}_t}\beta_t$ $$L(\theta) = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \epsilon_t} \left[\| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \|^2 \right]$$ $$= \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \epsilon_t} \left[\| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t, t) \|^2 \right]$$ ## Algorithm 1 Training ## 1: repeat - 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ - 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ - 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ - 5: Take gradient descent step on $$\left\| \mathbf{\epsilon} - \mathbf{\epsilon}_{ heta} (\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} \mathbf{\epsilon}, t) ight\|^2$$ 6: **until** converged # Algorithm 2 Sampling - 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ - 2: **for** t = T, ..., 1 **do** - 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ - 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ - 5: end for - 6: **return** \mathbf{x}_0 29 / 64 # Some implementation tricks: Exponential Moving Average (EMA) During the training, for each training step, $$\tilde{\theta}_{n+1} = (1 - \mu)\theta_{n+1} + \mu\theta_n$$ with $\mu = 0.9$ for example. ## Time representation Network architecture: UNET Time representation: sinusoidal positional embeddings or random Fourier features and the network is a U-NET. 2.3. The continuous framework Image extracted from [Y. Song et al., 2023] # Study of the continuous framework [Y. Song et al., 2023]¹² #### GROSSISSEMENT D'UNE FILTRATION #### ET RETOURNEMENT DU TEMPS D'UNE DIFFUSION #### E.PARDOUX #### 1. Introduction . Soit { $X_{\mbox{t}},\mbox{O} \le \mbox{t} \le 1$ } un processus de diffusion dans $\mbox{I\!R}^d$ solution de l'E.D.S: $$dx_t = b(t, x_t)dt + \sigma(t, x_t)dw_t$$ où $\{W_t,0 \le t \le 1\}$ est un mouvement brownien standard dans \mathbb{R}^ℓ . Continuant le travail de [2], nous nous posons la question suivante: existe-t-il un brownien standard dans \mathbb{R}^ℓ $\{W_t,0 \le t \le 1\}$ et des coefficients $\{\overline{b}(t,x),\overline{\sigma}(t,x);0 \le t \le 1,x \in \mathbb{R}^d\}$ tels que le processus $\overline{X}_t = X_{1-t},0 \le t \le 1$, soit solution de : $$d\overline{x}_t = \overline{b}(t, \overline{x}_t)dt + \overline{\sigma}(t, \overline{x}_t) d\overline{w}_t$$ Notre méthode consiste à identifier $\{\overline{w}_t\}$, en résolvant un problème de grossissement de filtration . On pourrait probablement déduire le résultat ci-dessous de ceux de Jeulin [4] et de Jacod ¹² Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. International Conference on Learning Representations ## SDE in one slide What means $d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$? ## SDE in one slide Émile Pierret, supervised by Bruno Galerne What means $$d\mathbf{x}_t = b(t, \mathbf{x}_t)dt + \sigma(t)d\mathbf{w}_t$$? $$\boldsymbol{x}_t = \boldsymbol{x}_0 + \int_0^t b(s, \boldsymbol{x}_s) ds + \int_0^t \sigma(s) ds$$ ## SDE in one slide What means $d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$? $$oldsymbol{x}_t = oldsymbol{x}_0 + \int_0^t b(s, oldsymbol{x}_s) ds + \int_0^t \sigma(s) ds$$ Discretly, $$x(t + \Delta t) - x(t) \approx \Delta t b(t, x(t)) + \sigma(t) \sqrt{\Delta t} \xi_t$$, with $\xi_t \sim \mathcal{N}(0, I)$ Forward process: Let $(x_t)_{0 \leqslant t \leqslant 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ where $(\boldsymbol{w}_t)_{0\leqslant t\leqslant 1}$ is a standard Brownian motion. Forward process: Let $(x_t)_{0 \leqslant t \leqslant 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ $$d\boldsymbol{x}_t = -\frac{1}{2}\beta(t)\boldsymbol{x}_t dt + \sqrt{\beta(t)}d\boldsymbol{w}_t$$ Forward process: Let $(x_t)_{0 \le t \le 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ $$d\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t dt + \sqrt{\beta(t)}d\mathbf{w}_t$$ $$x(t + \Delta t) = x_t - \frac{1}{2}\beta(t)\Delta t x_t + \sqrt{\beta(t)\Delta t}\varepsilon_t$$ **Forward process:** Let $(x_t)_{0 \le t \le 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ $$d\boldsymbol{x}_t = -\frac{1}{2}\beta(t)\boldsymbol{x}_t dt + \sqrt{\beta(t)}d\boldsymbol{w}_t$$ $$\mathbf{x}(t + \Delta t) = \mathbf{x}_t - \frac{1}{2}\beta(t)\Delta t \mathbf{x}_t + \sqrt{\beta(t)\Delta t} \boldsymbol{\varepsilon}_t$$ $$= (1 - \frac{1}{2}\beta(t)\Delta t)\mathbf{x}_t + \sqrt{\beta(t)\Delta t} \boldsymbol{\varepsilon}_t$$ Forward process: Let $(x_t)_{0 \leqslant t \leqslant 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ $$d\boldsymbol{x}_t = -\frac{1}{2}\beta(t)\boldsymbol{x}_t dt + \sqrt{\beta(t)}d\boldsymbol{w}_t$$ $$\mathbf{x}(t + \Delta t) = \mathbf{x}_t - \frac{1}{2}\beta(t)\Delta t \mathbf{x}_t + \sqrt{\beta(t)\Delta t} \boldsymbol{\varepsilon}_t$$ $$= (1 - \frac{1}{2}\beta(t)\Delta t)\mathbf{x}_t + \sqrt{\beta(t)\Delta t} \boldsymbol{\varepsilon}_t$$ $$\approx \sqrt{1 - \beta(t)\Delta t} \mathbf{x}_t + \sqrt{\beta(t)\Delta t} \boldsymbol{\varepsilon}_t$$ Forward process: Let $(x_t)_{0 \leqslant t \leqslant 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ $$dx_{t} = -\frac{1}{2}\beta(t)x_{t}dt + \sqrt{\beta(t)}dw_{t}$$ $$x(t + \Delta t) = x_{t} - \frac{1}{2}\beta(t)\Delta t x_{t} + \sqrt{\beta(t)\Delta t}\varepsilon_{t}$$ $$= (1 - \frac{1}{2}\beta(t)\Delta t)x_{t} + \sqrt{\beta(t)\Delta t}\varepsilon_{t}$$ $$\approx \sqrt{1 - \beta(t)\Delta t}x_{t} + \sqrt{\beta(t)\Delta t}\varepsilon_{t}$$ $$\approx \sqrt{1 - \beta_{t}}x_{t} + \sqrt{\beta_{t}}z_{t}$$ Forward process: Let $(x_t)_{0 \leqslant t \leqslant 1}$ be a diffusion process verifying the SDE: $$d\boldsymbol{x}_t = b(t, \boldsymbol{x}_t)dt + \sigma(t)d\boldsymbol{w}_t$$ where $(w_t)_{0 \leqslant t \leqslant 1}$ is a standard Brownian motion. **Example:** $$dx_{t} = -\frac{1}{2}\beta(t)x_{t}dt + \sqrt{\beta(t)}dw_{t}$$ $$x(t + \Delta t) = x_{t} - \frac{1}{2}\beta(t)\Delta t x_{t} + \sqrt{\beta(t)\Delta t}\varepsilon_{t}$$ $$= (1 - \frac{1}{2}\beta(t)\Delta t)x_{t} + \sqrt{\beta(t)\Delta t}\varepsilon_{t}$$ $$\approx \sqrt{1 - \beta(t)\Delta t}x_{t} + \sqrt{\beta(t)\Delta t}\varepsilon_{t}$$ $$\approx \sqrt{1 - \beta_{t}}x_{t} + \sqrt{\beta_{t}}z_{t}$$ It is DDPM! With $\beta_t = \Delta_t \beta\left(\frac{t}{T}\right)$ 37 / 64 Question from [Pardoux, 1986]¹³: Is there $\overline{b}, \overline{\sigma}$ such that $\overline{x}_t = x_{1-t}$ is solution of the reverse SDE: $$d\overline{\boldsymbol{x}}_t = \overline{b}(t, \overline{\boldsymbol{x}}_t)dt + \overline{\sigma}(t)d\overline{\boldsymbol{w}}_t$$ $^{^{13}}$ Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48–55). Springer Berlin Heidelberg Question from [Pardoux, 1986]¹³: Is there $\bar{b}, \bar{\sigma}$ such that $\bar{x}_t = x_{1-t}$ is solution of the reverse SDE: $$d\overline{\boldsymbol{x}}_t = \overline{b}(t, \overline{\boldsymbol{x}}_t)dt +
\overline{\sigma}(t)d\overline{\boldsymbol{w}}_t$$ **Backward process:** Under certain assumptions, x_t is a weak solution of the following SDE, backward in time: $$d\mathbf{x}_{t} = \left[b(t, \mathbf{x}_{t}) - \sigma(t)^{2} \nabla_{\mathbf{x}} \log p_{t}(\overline{\mathbf{x}}_{t})\right] dt + \sigma(t) \otimes d\hat{\mathbf{w}}_{t}$$ with $\hat{w}_t = w_t - w_1 - \int_t^1 \nabla \log p_s(x_s) ds$ which is a backward Brownian motion adapted to the filtration $\sigma(x_t \cup \{w_s - w_t, t \leq s \leq 1\})$ 38 / 64 ¹³Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48–55). Springer Berlin Heidelberg Question from [Pardoux, 1986]¹³: Is there $\overline{b}, \overline{\sigma}$ such that $\overline{x}_t = x_{1-t}$ is solution of the reverse SDE: $$d\overline{\boldsymbol{x}}_t = \overline{b}(t, \overline{\boldsymbol{x}}_t)dt + \overline{\sigma}(t)d\overline{\boldsymbol{w}}_t$$ **Backward process:** Under certain assumptions, x_t is a weak solution of the following SDE, backward in time: $$d\mathbf{x}_{t} = \left[b(t, \mathbf{x}_{t}) - \sigma(t)^{2} \nabla_{\mathbf{x}} \log p_{t}(\overline{\mathbf{x}}_{t})\right] dt + \sigma(t) \otimes d\hat{\mathbf{w}}_{t}$$ with $\hat{w}_t = w_t - w_1 - \int_t^1 \nabla \log p_s(x_s) ds$ which is a backward Brownian motion adapted to the filtration $\sigma(x_t \cup \{w_s - w_t, t \leq s \leq 1\})$ That means: $$\overline{b}(t, \overline{\boldsymbol{x}}_t) = -b(1 - t, \overline{\boldsymbol{x}}_t) - \sigma(1 - t)^2 \nabla_{\boldsymbol{x}} \log p_{1-t}(\overline{\boldsymbol{x}}) \overline{\sigma}(t) = -\sigma(1 - t) \overline{\boldsymbol{w}}_t = \boldsymbol{w}_{1-t} - \boldsymbol{w}_1 - \int_{1-t}^1 \nabla \log p_s(\boldsymbol{x}_s) ds$$ ¹³pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48–55). Springer Berlin Heidelberg $$m{x}_t pprox \sqrt{\overline{lpha}_t} m{x}_0 + \sqrt{1-\overline{lpha}_t} m{arepsilon}_{ heta}(m{x}_t,t)$$ and: $$q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) \propto \exp\left(-\frac{\|\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0\|^2}{2(1 - \overline{\alpha}_t)}\right)$$ ¹⁴Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS) $$m{x}_t pprox \sqrt{\overline{lpha}_t} m{x}_0 + \sqrt{1-\overline{lpha}_t} m{arepsilon}_{ heta}(m{x}_t,t)$$ and: $$q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) \propto \exp\left(-\frac{\|\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t}\boldsymbol{x}_0\|^2}{2(1 - \overline{\alpha}_t)}\right)$$ $$\nabla \log q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) = -\frac{\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0}{1 - \overline{\alpha}_t} \approx -\frac{\varepsilon_{\theta}(\boldsymbol{x}_t, t)}{1 - \overline{\alpha}_t}$$ ¹⁴Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurIPS) $$m{x}_t pprox \sqrt{\overline{lpha}_t} m{x}_0 + \sqrt{1-\overline{lpha}_t} m{arepsilon}_{ heta}(m{x}_t,t)$$ and: $$q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) \propto \exp\left(-\frac{\|\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0\|^2}{2(1 - \overline{\alpha}_t)}\right)$$ $$\nabla \log q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) = -\frac{\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0}{1 - \overline{\alpha}_t} \approx -\frac{\varepsilon_{\theta}(\boldsymbol{x}_t, t)}{1 - \overline{\alpha}_t}$$ Consequently, $-\frac{\varepsilon_{\theta}(\boldsymbol{x}_{t},t)}{1-\overline{\alpha}_{t}}$ minimizes $\mathbb{E}_{\boldsymbol{x}_{0}}\left(\left\|\nabla\log q(\boldsymbol{x}_{t}\mid\boldsymbol{x}_{0})-X\right\|^{2}\right)$ ¹⁴ Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurIPS) $$m{x}_t pprox \sqrt{\overline{lpha}_t} m{x}_0 + \sqrt{1-\overline{lpha}_t} m{arepsilon}_{ heta}(m{x}_t,t)$$ and: $$q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) \propto \exp\left(-\frac{\|\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t}\boldsymbol{x}_0\|^2}{2(1 - \overline{\alpha}_t)}\right)$$ $$\nabla \log q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) = -\frac{\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0}{1 - \overline{\alpha}_t} \approx -\frac{\varepsilon_{\theta}(\boldsymbol{x}_t, t)}{1 - \overline{\alpha}_t}$$ Consequently, $$-\frac{\varepsilon_{\theta}(\boldsymbol{x}_t,t)}{1-\overline{\alpha}_t}$$ minimizes $\mathbb{E}_{\boldsymbol{x}_0}\left(\|\nabla \log q(\boldsymbol{x}_t\mid \boldsymbol{x}_0) - X\|^2\right)$ and, $$s_{\theta}(\boldsymbol{x}_{t},t) = -\frac{\varepsilon_{\theta}(\boldsymbol{x}_{t},t)}{1-\overline{\alpha}_{t}} \approx \nabla \log q(\boldsymbol{x}_{t})$$ 14 Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurIPS) $$m{x}_t pprox \sqrt{\overline{lpha}_t} m{x}_0 + \sqrt{1-\overline{lpha}_t} m{arepsilon}_{ heta}(m{x}_t,t)$$ and: $$q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) \propto \exp\left(-\frac{\|\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0\|^2}{2(1 - \overline{\alpha}_t)}\right)$$ $$\nabla \log q(\boldsymbol{x}_t \mid \boldsymbol{x}_0) = -\frac{\boldsymbol{x}_t - \sqrt{\overline{\alpha}_t} \boldsymbol{x}_0}{1 - \overline{\alpha}_t} \approx -\frac{\boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t)}{1 - \overline{\alpha}_t}$$ Consequently, $-\frac{arepsilon_{ heta}(oldsymbol{x}_t,t)}{1-\overline{lpha}_t}$ minimizes $\mathbb{E}_{oldsymbol{x}_0}\left(\| abla\log q(oldsymbol{x}_t\midoldsymbol{x}_0)-X\|^2 ight)$ and, $$s_{ heta}(m{x}_t,t) = - rac{m{arepsilon}_{m{x}_t}(m{x}_t,t)}{1-\overline{lpha}_t} pprox abla \log q(m{x}_t)$$ $$oldsymbol{x}_{t-1} = rac{1}{\sqrt{lpha_t}} \left(oldsymbol{x}_t + (1 - lpha_t) s_{ heta}(oldsymbol{x}_t, t) ight) + ilde{eta}_t oldsymbol{z}_t imes \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$ This is well explained in [Chung et al., 2022]¹⁴ ¹⁴Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurIPS) ## **DDPM** With $$b(t, \boldsymbol{x}) = -\frac{1}{2}\beta(t)\boldsymbol{x}, \sigma(t) = \sqrt{\beta(t)},$$ $$\overline{\boldsymbol{x}}_t = \left[b(t, \overline{\boldsymbol{x}}_t) - \sigma(t)^2 \nabla_{\boldsymbol{x}} \log p_t(\overline{\boldsymbol{x}})\right] dt + \sigma(t) d\overline{\boldsymbol{w}}_t$$ becomes: $$\begin{array}{rcl} d\overline{\boldsymbol{x}}_t & = & \frac{1}{2}\beta(t)\boldsymbol{x}dt & -\beta(t)\nabla_{\boldsymbol{x}}\log p_t(\overline{\boldsymbol{x}})dt & \sqrt{\beta(t)}d\overline{\boldsymbol{w}}_t \\ \boldsymbol{x}_{t-1} & = & \frac{1}{\sqrt{1-\beta_t}}\boldsymbol{x}_t & +\frac{\beta_t}{\sqrt{1-\beta_t}}s_{\theta}(\boldsymbol{x}_t,t) & \tilde{\beta}_t\boldsymbol{z}_t \end{array}$$ And $$\frac{1}{\sqrt{1-\beta_t}} \approx 1 + \frac{1}{2}\beta_t$$, $\frac{\beta_t}{\sqrt{1-\beta_t}} \approx \beta_t(1 + \frac{1}{2}\beta_t) \approx \beta_t$ ## To other approaches Can be applied to other SDE as the model SMLD [Y. Song and Ermon, 2019] 15 where $dm{x}_t = \sqrt{ rac{d[\sigma^2(t)]}{dt}}dm{w}_t$ Émile Pierret, supervised by Bruno Galerne ¹⁵ Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems #### To other approaches To a SDE $d\mathbf{x}_t = f(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$ can be associated an ODE: $d\mathbf{x} = \left[f(\mathbf{x}, t) - \frac{1}{2}g(t)^2\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\right]dt$ Image extracted from [Y. Song et al., 2023]¹⁶ ¹⁶Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations* 2.4. Conclusion #### Conclusion - Speed-up the convergence. [De Bortoli et al., 2021]¹⁷, [Dhariwal and Nichol, 2021]¹⁸ - The data distribution does not have density Bortoli, 2022¹⁹ - Not presented here: DDIM [J. Song et al., 2021]²⁰. - Interesting tutorials: Song's code: https://github.com/yang-song/score_sde, 2D models: https://github.com/acids-ircam/diffusion_models/tree/main - Reading recommendation : [Ho et al., 2020]²¹, [Y. Song et al., 2023]²² ¹⁷De Bortoli, V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion schrödinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing Systems ¹⁸Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems ¹⁹Bortoli, V. D. (2022). Convergence of denoising diffusion models under the manifold hypothesis. *Transactions on Machine Learning Research* ²⁰Song, J., Meng, C., & Ermon, S. (2021). Denoising diffusion implicit models. *International Conference on Learning Representations* ²¹Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems ²²Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations* #### Introduction #### Various approaches: - Re-train a score-based model. [Saharia et al., 2022]²³ - Classifier quidance method. [Y. Song et al., 2023]²⁴ - The replacement method, presented today. [Lugmayr et al., 2022]²⁵, [Chung et al., 2022]²⁶ - Pseudo-inverse reasonning [Choi et al., 2021]²⁷ ²³ Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., &
Norouzi, M. (2022). Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023), Score-based generative modeling through stochastic differential equations. International Conference on Learning Representations ²⁵Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. RePaint ²⁶Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022), Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurIPS) ²⁷Choi, J., Kim, S., Jeong, Y., Gwon, Y., & Yoon, S. (2021). ILVR: Conditioning method for denoising diffusion probabilistic models. ILVR # **Diverse impaiting** Let suppose that $x \sim p_{\text{data}}$, we suppose that there exists a mask m such that mx is known. **Objective:** Sample x conditioned on mx = y. Example: y = mx # **Diverse impaiting** Let suppose that $x \sim p_{\text{data}}$, we suppose that there exists a mask m such that mx is known. **Objective:** Sample x conditioned on mx = y. ### Example: x y = mx Sample 1 Sample 2 Let denote $\overline{m} = 1 - m$ **Objective:** Sample x_0 conditioned on $mx_0 = y$. Let suppose that we know a diffusion model for $m{x}_0 \sim p_{\mathsf{data}}.$ We would like to model the evolution of $z_t=\overline{m}x_t$ for the forward and the backward processes. Let denote $\overline{m} = 1 - m$ **Objective:** Sample x_0 conditioned on $mx_0 = y$. Let suppose that we know a diffusion model for ${m x}_0 \sim p_{\sf data}$. We would like to model the evolution of $z_t = \overline{m}x_t$ for the forward and the backward processes. The forward process is: $$d\boldsymbol{z}_t = -\frac{1}{2}\beta(t)\boldsymbol{z}_t dt + \sqrt{\beta(t)}d\boldsymbol{w}_t$$ Let denote $\overline{m} = 1 - m$ **Objective:** Sample x_0 conditioned on $mx_0 = y$. Let suppose that we know a diffusion model for ${m x}_0 \sim p_{\sf data}$. We would like to model the evolution of $z_t = \overline{m}x_t$ for the forward and the backward processes. The forward process is: $$d\boldsymbol{z}_t = -\frac{1}{2}\beta(t)\boldsymbol{z}_t dt + \sqrt{\beta(t)}d\boldsymbol{w}_t$$ The reversed SDE is conditionned on $m x_0 = y$ and becomes: $$d\boldsymbol{z}_{t} = \left[-\frac{1}{2}\beta(t)\boldsymbol{z}_{t} - \beta(t)\nabla_{\boldsymbol{z}}\log p\left(\boldsymbol{z}_{t} \mid m\boldsymbol{x}_{0} = \boldsymbol{y}\right) \right]dt + \sqrt{\beta(t)}d\overline{\boldsymbol{w}}_{t}$$ Let denote $\overline{m} = 1 - m$ **Objective:** Sample x_0 conditioned on $mx_0 = y$. Let suppose that we know a diffusion model for ${m x}_0 \sim p_{\sf data}.$ We would like to model the evolution of $z_t = \overline{m}x_t$ for the forward and the backward processes. The forward process is: $$d\boldsymbol{z}_t = -\frac{1}{2}\beta(t)\boldsymbol{z}_t dt + \sqrt{\beta(t)}d\boldsymbol{w}_t$$ The reversed SDE is conditionned on $mx_0 = y$ and becomes: $$d\boldsymbol{z}_{t} = \left[-\frac{1}{2}\beta(t)\boldsymbol{z}_{t} - \beta(t)\nabla_{\boldsymbol{z}}\log p\left(\boldsymbol{z}_{t} \mid m\boldsymbol{x}_{0} = \boldsymbol{y}\right) \right]dt + \sqrt{\beta(t)}d\overline{\boldsymbol{w}}_{t}$$ **Problem:** $\nabla_{\boldsymbol{z}} \log p_t \left(\boldsymbol{z}_t \mid m \boldsymbol{x}_0 = \boldsymbol{y} \right)$ is not tractable. $p_t \left[\boldsymbol{z}_t \mid m \boldsymbol{x}_0 = \boldsymbol{y} \right]$ Let denote $\overline{\boldsymbol{m}} = 1 - \boldsymbol{m}$ July, 5th Let denote $\overline{\boldsymbol{m}} = 1 - \boldsymbol{m}$ $$p_t [\boldsymbol{z}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}] = p_t [\overline{\boldsymbol{m}}\boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}]$$ July, 5th $$p_{t} [\boldsymbol{z}_{t} \mid m\boldsymbol{x}_{0} = \boldsymbol{y}] = p_{t} [\overline{\boldsymbol{m}}\boldsymbol{x}_{t} \mid m\boldsymbol{x}_{0} = \boldsymbol{y}]$$ $$= \int p_{t} [\overline{\boldsymbol{m}}\boldsymbol{x}_{t} \mid m\boldsymbol{x}_{0} = \boldsymbol{y}, m\boldsymbol{x}_{t}] p_{t} [\boldsymbol{m}\boldsymbol{x}_{t} \mid m\boldsymbol{z}_{0} = \boldsymbol{y}] d(\boldsymbol{m}\boldsymbol{x}_{t})$$ $$p_{t} [\mathbf{z}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}] = p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]$$ $$= \int p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] p_{t} [m\mathbf{x}_{t} \mid m\mathbf{z}_{0} = \mathbf{y}] d(m\mathbf{x}_{t})$$ $$= \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] \Big)$$ $$p_{t} [\mathbf{z}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}] = p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]$$ $$= \int p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] p_{t} [m\mathbf{x}_{t} \mid m\mathbf{z}_{0} = \mathbf{y}] d(m\mathbf{x}_{t})$$ $$= \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] \Big)$$ $$\approx \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}] \Big)$$ $$p_{t} [\mathbf{z}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}] = p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]$$ $$= \int p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] p_{t} [m\mathbf{x}_{t} \mid m\mathbf{z}_{0} = \mathbf{y}] d(m\mathbf{x}_{t})$$ $$= \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] \Big)$$ $$\approx \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}] \Big)$$ $$\approx p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}]$$ $$\begin{aligned} p_t \left[\boldsymbol{z}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right] &= p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right] \\ &= \int p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}, m\boldsymbol{x}_t \right] p_t \left[\boldsymbol{m} \boldsymbol{x}_t \mid m\boldsymbol{z}_0 = \boldsymbol{y} \right] d(\boldsymbol{m} \boldsymbol{x}_t) \\ &= \mathbb{E}_{p_t \left[\boldsymbol{m} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right]} \left(p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}, m\boldsymbol{x}_t \right] \right) \\ &\approx \mathbb{E}_{p_t \left[\boldsymbol{m} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right]} \left(p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_t \right] \right) \\ &\approx p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_t \right] \end{aligned}$$ Now. $$\log p_t\left(\boldsymbol{x}_t\right) = \log p_t\left(\overline{\boldsymbol{m}}\boldsymbol{x}_t, \boldsymbol{x}_t\right)$$ $$\begin{aligned} p_t \left[\boldsymbol{z}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right] &= p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right] \\ &= \int p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}, m\boldsymbol{x}_t \right] p_t \left[\boldsymbol{m} \boldsymbol{x}_t \mid m\boldsymbol{z}_0 = \boldsymbol{y} \right] d(\boldsymbol{m} \boldsymbol{x}_t) \\ &= \mathbb{E}_{p_t \left[\boldsymbol{m} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right]} \left(p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}, m\boldsymbol{x}_t \right] \right) \\ &\approx \mathbb{E}_{p_t \left[\boldsymbol{m} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right]} \left(p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_t \right] \right) \\ &\approx p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_t \right] \end{aligned}$$ Now, $$\log p_t\left(\boldsymbol{x}_t\right) = \log p_t\left(\overline{\boldsymbol{m}}\boldsymbol{x}_t, \boldsymbol{x}_t\right) = \log p_t\left(\overline{\boldsymbol{m}}\boldsymbol{x}_t \mid \boldsymbol{m}\boldsymbol{x}_t\right) + \log p_t\left(\boldsymbol{m}\boldsymbol{x}_t\right)$$ $$p_{t} [\mathbf{z}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}] = p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]$$ $$= \int p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] p_{t} [m\mathbf{x}_{t} \mid m\mathbf{z}_{0} = \mathbf{y}] d(m\mathbf{x}_{t})$$ $$= \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] \Big)$$ $$\approx \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}] \Big)$$ $$\approx p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}]$$ Now, $$\log p_t(\boldsymbol{x}_t) = \log p_t(\overline{\boldsymbol{m}}\boldsymbol{x}_t, \boldsymbol{x}_t) = \log p_t(\overline{\boldsymbol{m}}\boldsymbol{x}_t \mid \boldsymbol{m}\boldsymbol{x}_t) + \log p_t(\boldsymbol{m}\boldsymbol{x}_t)$$ Thus, $$\nabla_{\boldsymbol{z}} \log p_t \left(\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid \boldsymbol{m} \boldsymbol{x}_t \right) = \nabla_{\overline{\boldsymbol{m}} \boldsymbol{x}} \log p_t \left(\boldsymbol{x}_t \right)$$ $$\begin{aligned} p_t \left[\boldsymbol{z}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right] &= p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right] \\ &= \int p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 =
\boldsymbol{y}, m\boldsymbol{x}_t \right] p_t \left[m\boldsymbol{x}_t \mid m\boldsymbol{z}_0 = \boldsymbol{y} \right] d(m\boldsymbol{x}_t) \\ &= \mathbb{E}_{p_t \left[m\boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right]} \left(p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y}, m\boldsymbol{x}_t \right] \right) \\ &\approx \mathbb{E}_{p_t \left[m\boldsymbol{x}_t \mid m\boldsymbol{x}_0 = \boldsymbol{y} \right]} \left(p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_t \right] \right) \\ &\approx p_t \left[\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid m\boldsymbol{x}_t \right] \end{aligned}$$ Now, $$\log p_t\left(\boldsymbol{x}_t\right) = \log p_t\left(\overline{\boldsymbol{m}}\boldsymbol{x}_t, \boldsymbol{x}_t\right) = \log p_t\left(\overline{\boldsymbol{m}}\boldsymbol{x}_t \mid \boldsymbol{m}\boldsymbol{x}_t\right) + \log p_t\left(\boldsymbol{m}\boldsymbol{x}_t\right)$$ Thus, $$\nabla_{z} \log p_{t} \left(\overline{m} \boldsymbol{x}_{t} \mid \boldsymbol{m} \boldsymbol{x}_{t} \right) = \nabla_{\overline{m} \boldsymbol{x}} \log p_{t} \left(\boldsymbol{x}_{t} \right) = \overline{\boldsymbol{m}} \nabla_{\boldsymbol{x}} \log p_{t} \left(\boldsymbol{x}_{t} \right)$$ $$p_{t} [\mathbf{z}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}] = p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]$$ $$= \int p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] p_{t} [m\mathbf{x}_{t} \mid m\mathbf{z}_{0} = \mathbf{y}] d(m\mathbf{x}_{t})$$ $$= \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}, m\mathbf{x}_{t}] \Big)$$ $$\approx \mathbb{E}_{p_{t}[m\mathbf{x}_{t} \mid m\mathbf{x}_{0} = \mathbf{y}]} \Big(p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}] \Big)$$ $$\approx p_{t} [\overline{m}\mathbf{x}_{t} \mid m\mathbf{x}_{t}]$$ Now, $$\log p_t(\boldsymbol{x}_t) = \log p_t(\overline{\boldsymbol{m}}\boldsymbol{x}_t, \boldsymbol{x}_t) = \log p_t(\overline{\boldsymbol{m}}\boldsymbol{x}_t \mid \boldsymbol{m}\boldsymbol{x}_t) + \log p_t(\boldsymbol{m}\boldsymbol{x}_t)$$ Thus, $$\nabla_{\boldsymbol{z}} \log p_t \left(\overline{\boldsymbol{m}} \boldsymbol{x}_t \mid \boldsymbol{m} \boldsymbol{x}_t \right) = \nabla_{\overline{\boldsymbol{m}} \boldsymbol{x}} \log p_t \left(\boldsymbol{x}_t \right) = \overline{\boldsymbol{m}} \nabla_{\boldsymbol{x}} \log p_t \left(\boldsymbol{x}_t \right)$$ Consequently, the approached backward SDE becomes: $$d\boldsymbol{z}_{t} = \left[-\frac{1}{2} \overline{\boldsymbol{m}} \beta(t) \boldsymbol{x}_{t} - \overline{\boldsymbol{m}} \beta(t) \nabla_{\boldsymbol{x}} \log p_{t} \left(\boldsymbol{x}_{t} \right) \right] dt + \sqrt{\beta(t)} d\overline{\boldsymbol{w}}_{t}$$ #### How to build a conditional diffusion model? Image extracted from [Lugmayr et al., 2022]²⁸ ²⁸ Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. RePaint #### Pseudo-code - 1. Input: A masked image mx = y - 2. Sample $x_T \sim \mathcal{N}(\mathbf{0}, I)$ - 3. For t = T, ..., 1 - 4. Sample $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 5. $$x_{t-1}^{\text{known}} = \sqrt{\overline{\alpha}_t} y + (1 - \overline{\alpha}_t) \varepsilon$$ - 6. Sample $z \sim \mathcal{N}(\mathbf{0}, I)$ if t > 1 else $z = \mathbf{0}$ - 7. $x_{t-1}^{\mathsf{unknown}} = \frac{1}{\sqrt{\alpha_t}} \left(x_t \frac{\beta_t}{\sqrt{1-\overline{\alpha}_t}} \varepsilon_{\theta}(x_t, t) \right) + \sigma_t z$ - 8. $x_{t-1} = m \odot x_{t-1}^{\mathsf{known}} + (1-m) \odot x_{t-1}^{\mathsf{unknown}}$ - 9. Output: \boldsymbol{x}_0 ullet $x_{t-1}^{ m known}$ is resampled at each step knowing: $$\boldsymbol{x}_{t-1} \sim \mathcal{N}(\sqrt{\overline{\alpha}_t}\boldsymbol{x}_0, (1-\overline{\alpha}_t)\boldsymbol{I})$$ #### Time schedule Émile Pierret, supervised by Bruno Galerne - 1. For each group of times of size j - 2. Do r times: For $$s = T, \ldots, T - j$$ Do the backward from s to s-1 5. For $$s = T - j, ..., T$$ 6. Do the forward from s to s+1 7. For $$s = T, \ldots, T - j$$ 8. Do the backward from s to s-1 #### Learned variance **Problem:** From 1000 steps to 18820 steps with j=r=10 In DDPM, there are two choices for the variance schedule of the backward process: β_t of $\tilde{\beta}_t$. Nichol and Dhariwal, 2021 proposes to learn the variance as $$\Sigma_{\theta}(\boldsymbol{x}, t) = \exp\left[v \log(\beta_t) + (1 - v) \log(\tilde{\beta}_t)\right]$$ This reduces the number of steps from 1000 steps to 250 steps. **Now:** From 250 steps to 4570 steps with j=r=10. # "Justification" of the algorithm From the article: "However, the sampling of the known pixels using is performed without considering the generated parts of the image, which introduces disharmony. Although the model tries to harmonize the image again in every step, it can never fully converge because the same issue occurs in the next step. Moreover, in each reverse step, the maximum change to an image declines due to the variance schedule of β_t . Thus, the method cannot correct mistakes that lead to disharmonious boundaries in the subsequent steps due to restricted flexibility. As a consequence, the model needs more time to harmonize the conditional information $x^{\rm known}$ with the generated information $x^{\rm unknown}$ in one step before advancing to the next denoising step." ## Fails #### Conclusion - Free learning method is an interesting approach. - Probably far from the true conditional distribution [Trippe et al., 2023]²⁹. - An other approach with manifold constraints [Chung et al., 2022]³⁰. ²⁹Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R., & Jaakkola, T. S. (2023). Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. International Conference on Learning Representations ^{3Q}Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurIPS) The end Thank you for your attention ! #### References - Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer. - Bortoli, V. D. (2022). Convergence of denoising diffusion models under the manifold hypothesis. *Transactions on Machine Learning Research*. - Choi, J., Kim, S., Jeong, Y., Gwon, Y., & Yoon, S. (2021). ILVR: Conditioning method for denoising diffusion probabilistic models. *ILVR*. - Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. *Advances in Neural Information Processing Systems (NeurIPS)*. - De Bortoli, V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*. - Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. *Advances in Neural Information Processing Systems*. - Feller, W. (1949). On the theory of stochastic processes, with particular reference to applications. *Proceedings* of the [First] Berkeley Symposium on Mathematical Statistics and Probability. - Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*. - Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. *RePaint*. - Nichol, A. Q., & Dhariwal, P. (2021). Improved denoising diffusion probabilistic models. In M. Meila & T. Zhang (Eds.), *Proceedings of the 38th international conference on machine learning* (pp. 8162–8171). PMLR. https://proceedings.mlr.press/v139/nichol21a.html - Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), *Séminaire de probabilités xx 1984/85* (pp. 48–55). Springer Berlin Heidelberg. - Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., & Norouzi, M. (2022). Image super-resolution via iterative refinement. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. - Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics [ISSN: 1938-7228]. Proceedings of the 32nd International Conference on Machine Learning, 2256–2265. Retrieved 2022-12-01, from https://proceedings.mlr.press/v37/sohl-dickstein15.html - Song, J., Meng, C., & Ermon, S. (2021). Denoising diffusion implicit models. *International Conference on Learning Representations*. - Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. *Advances in Neural Information Processing Systems*. - Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*. - Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R., & Jaakkola, T. S. (2023). Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. *International Conference on Learning Representations*. - Xiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion GANs. *International Conference on Learning Representations*. - Zhang, Y., Liu, W., Chen, Z., Li, K., & Wang, J. (2021). On the properties of kullback-leibler divergence between gaussians. *CoRR*, *abs/2102.05485*. https://arxiv.org/abs/2102.05485 Émile Pierret, supervised by Bruno Galerne # Appendix - Architecture of U-NET: 63 - β or $\tilde{\beta}$: 63 - Sketch of proof Pardoux, 1986 : 64 We can read in Ho et al., 2020, "Experimentally, both $\sigma_t^2 = \beta_t$ and
$\sigma_t^2 = \tilde{\beta}_t$ had similar results. The first choice is optimal for $x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and the second is optimal for x_0 deterministically set to one point. These are the two extreme choices corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise unit variance Sohl-Dickstein et al., 2015." - 1. $\hat{\boldsymbol{w}}_t = \boldsymbol{w}_t \boldsymbol{w}_1 \int_t^1 \nabla \log p_s(\boldsymbol{x}_s) ds$ is a backward Brownian motion adapted to the filtration $\sigma(\boldsymbol{x}_t \cup \{\boldsymbol{w}_s \boldsymbol{w}_t, t \leq s \leq 1\})$ because it is a local backward martingale. - 2. Rewriting of the SDE in the Stratonovich sense. - 3. Insertion of \hat{w}_t in the SDE. - 4. Change of variable.