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Introduction on generative models



What is a generative model

supervised by Bruno Galerne
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Previously in the working group...

22/09 : Variational Auto-Encoder (VAE):

\ Reconstructed Sample
R /

Data Sample

K \
X Probabilistic Encoder 5| 4 Probabilistic Decoder X
f(x) = plz|x) g(x) = p(x|z)
)
Latent Distribution
/ T

Image extracted from https://medium.com /@elzettevanrensburg/
generating-the-intuition-behind-variational-auto-encoders-vaes-c7d2f8631a87
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Previously in the working group...

25/10: Generative Aversarial Netowrk (GAN):

real images from distribution X'

discriminator D

; areal value
E m) indicating how “fake”

the image is

random Gaussian generator G

Image extracted from https://www.microsoft.com/en-us/research/blog/

fake images

how-can-generative-adversarial-networks-learn-real-life-distributions-easily /
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Main idea

Pdata
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To the diffusion models

/‘,' ngh .\
Generative - Quality ll.'\ Denoising
Adversarial -~ \\ o amples “, Diffusion
Networks/: “\ Models

Fast

Sampling J

Variational Autoencoders,
Normalizing Flows

Image extrated from [Xiao et al., 2022]

e Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural
Information Processing Systems

LXiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion GANs. International Conference on Learning Representations
Emile Pierret, supervised by Bruno Galerne
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Presentation of the diffusion models



Samples from diffusion models

o
s

Images extracted from riwal and Nichol, 2021]* from a model trained on ImageNet.

2Dhariwal, P., & Nichol, A (2021). Diffusion models beat GANs on image synthesis. Advances in Neural Information Process)
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Home-made with the code of Lugmayr et al., 20223

NB: 100s for 10 samples.

3Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. RePaint
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Stable diffusion*

AN

A young mathematician presenting diffusion models to his colleagues

“4https: //huggingface.co/spaces/stabilityai/stable- diffusion

et, supervised by Bruno Galerne Introduction to diffusion models for image generation and


https://huggingface.co/spaces/stabilityai/stable-diffusion

Stable diffusion®
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A young mathematician sadly discovers that he should study stochastic differential equations for his thesis.

Shttps: //huggingface.co/spaces/stabilityai/stable- diffusion
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Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw )@
‘ scie function
dx = [£(x,t) — ¢° (¢)Vx log p:(x)| dt + g(t)dw —@

Reverse SDE (noise — data)

Image extracted from [Y. Song et al., 2023]
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The forward process
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2.1. The forward process
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The forward process

Let & € R**M>*N he an image, sample from paata. We denote po := paata.

Our objective is to transform po into pr ~ 4(0, I) with T steps. | will present the process presented in DDPM

[Ho et al., 2020]°.

pe(xt 1! | X ) __ Prior

Data  __ .
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The forward process

Let € R**M>*N be an image, sample from pyara. We denote po := Pata-

Our objective is to transform pg into pr &~ 47(0, I) with T" steps. | will present the process presented in DDPM
[Ho et al., 2020]°.

Let (8¢)o<t<r be an increasing sequence of real numbers in [0,1]. Let ax = 1 — 3¢, we would like to construct

(z4)o<i<T-

OHo, J., Jain, A., & Abbeel, P (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems
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The forward process

Let € R**M>*N be an image, sample from pyara. We denote po := Pata-

Our objective is to transform pg into pr &~ 47(0, I) with T" steps. | will present the process presented in DDPM
[Ho et al., 2020]°.

Let (8¢)o<t<r be an increasing sequence of real numbers in [0,1]. Let ax = 1 — 3¢, we would like to construct

(wt)ogth. For all t > 1,

xy = /1 = Bixi—1 ++/Pier, with e, ~ A7(0, 1)

OHo, J., Jain, A., & Abbeel, P (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems
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The forward process

Let € R**M>*N be an image, sample from pyara. We denote po := Pata-

Our objective is to transform pg into pr &~ 47(0, I) with T" steps. | will present the process presented in DDPM
[Ho et al., 2020]°.

Let (8¢)o<t<r be an increasing sequence of real numbers in [0,1]. Let ax = 1 — 3¢, we would like to construct

(wt)ogth. For all t > 1,

xy = /1 = Bixi—1 ++/Pier, with e, ~ A7(0, 1)

Denoting ooy = 1 — 3¢

Ty = yJouxi—1 + V1 — auey, with g, ~ A(0,1)

OHo, J., Jain, A., & Abbeel, P (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems
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The forward process

Let € R**M>*N be an image, sample from pyara. We denote po := Pata-

Our objective is to transform pg into pr &~ 47(0, I) with T" steps. | will present the process presented in DDPM
[Ho et al., 2020]°.

Let (8¢)o<t<r be an increasing sequence of real numbers in [0,1]. Let ax = 1 — 3¢, we would like to construct

(wt)ogth. For all t > 1,

xy = /1 = Bixi—1 ++/Pier, with e, ~ A7(0, 1)

Denoting ooy = 1 — 3¢

Ty = yJouxi—1 + V1 — auey, with g, ~ A(0,1)

Other formulation:

xy ~ N (@43 mtwt—17/3t1)

OHo, J., Jain, A., & Abbeel, P (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems
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The forward process

Denoting a; = H.tq:1 as, Fort>1,

xr ~ N (@43 Vazo, (1—a)I)

In other words, @, can be expressed as

e = Vayxo + V1 — teze, with z¢ ~ A4(0,1)

Example:
If 1 = /a0 + V1 —aier,
T2 = Va,x1 + V1 — azes
= JazJoaaxo + v/azv/1 — are1 + /1 — azes
= Vaoxo + (V1 — ar1e1 + V1 — azel)

And:

(\/1—0&161 +\/1—O¢2€2) ~,/V(0,0¢2(1—0¢1)+1—0[2)=JV(0,1—@2)
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The forward decomposition

The forward decomposition is:

T
q(xo.r) = q(mo) [ [ a(ee | 1)
t=1

And we denote p; the law of x;.

Data ____ pB(}ft;]_l )ft)

qx |x,)

To keep in mind: Conditioning on xg, all is possible.
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2.2. The backward process
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The backward process

Data ___ Pe(xn“‘) ____ Prior

¢ . 8 &

t t-'l

7Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer
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The backward process

Data . Pe(xn“‘) ____ Prior

q(xi—1 | To, ) is tractable.

For example, see [Bishop, 2006]’

7Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer
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The backward process

Data . Pe(xn“‘) ____ Prior

q(xi—1 | To, ) is tractable.
For example, see [Bishop, 2006]”

@1 ~ N (@e—1; fie (21, 20), Be])
Var(l —a-1)

at:I Brxo + —
1-— it 1-— Qt

— Q— lﬁ
t

with ﬂt ((Et, (Bo) = Tt

B=1

1—a;

7Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer
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The backward probability pe

po(wor) = po(@r) | [ po(ai—1 | @)

We will suppose that pg (1 | ;) is Gaussian. [Feller, 1949]°.

This can be also explained in the discrete case by [De Bortoli et al., 2021]°.

po(xe—1 | @) = A (o, t), Xo ()

SFeller, W. (1949). On the theory of stochastic processes, with particular reference to applications. Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability

9De Bortoli, V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion schrédinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing
Systems
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Derivation of the ELBO [Sohl-Dickstein et al., 2015]

log pe(xo) = log JP& (zo:7)dx1:

po(xo:1)
= lo ——— 7 _qg(ax. xo)dxz.
gfq(w1;:r|mo)Q( o | e

= flog 7p9(w0:T) q(x1.7 | ®o)dx1.7 by Jensen's inequality
q(z1.r | x0)

Consequently,

Eaq~po [logpo(xo)] JJ pe Lo: T) q(x1.7 | ©o)q(x0)dx1:7dT0
331 T | 330)

= Jlog Mq(:ﬂ()ﬂ“)dw();T
q(z1.7 | o)

= Heo. {10g M]

q(zrr | x0)
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Derivation of the ELBO [Sohl-Dickstein et al., 2015]

By the forward and the backward decompositions,

pelwor) _ Pl | @)
o d@ir 20 5 {pe(wﬂﬂ q(z: [ Ti-1) ]
po(@i—1 | @)

T
= logpo(er) + ) log 5l 7

t=1
Consequently:

Eag~po [IOg Po (:l:o)]

1=

Exg.p~g [log pie(wtq | wt)]

= ~
= Ez(J:T q [lngg(wT)] + q(mt ‘ wt—l)

o~
Il
-

1=

Fay pq [log qu(a:tfl | x:) g | wO)] t Faypeq [log po (o | wl)]

=Egnra [L +
or~a [logpo(@r)] & o) o o W | o0)

o~
Il
N

7
po(T) po(Ti—1 | @) }
=FEzyp~q|!] +2Em_~ lo + Eg, . ~q [lO xo | @
0:T~q [Og q(mT ‘ mo)] = 0:T~q [ g q(mt | mt—hmo) 0:T q[ gpﬂ( 0 | 1)]
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Derivation of the ELBO [Sohl-Dickstein et al., 2015]

For2<t<T,

E. 1
=0T |8 (@, | @o_1, @o)

Emile Pierret, supervised by Bruno Galerne

po(Ti—1 | )

]_

log (q Lr—1 ‘ mt,wo)) q(wo;T)dwo;T
po(xi—1 | T+)

( q(xi—1 | e, o)
pemf 1|£Bf)

f
¥
(i
]

108; ) q($0,t71,t)d$()¢71¢

) q(ai1 | @, 20)q(xe, o)dXo, 1,0
po(Ti—1 | 1)

(J (w) q(-':ctfl \ mt>w0)dwt—1) q(wtﬂﬂo)dﬂm,z

po(xTi—1 | Tt)

—Ez,zo~q [Drr (q(@i—1 | T¢, @o)llpo(xe—1 | ®1))]
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Derivation of the ELBO [Sohl-Dickstein et al., 2015]

Finally,
Ewo ~Po [lOg Po (:130)]

T
> —Ea, [Dxz(a(@r | 20)|po(@r))] = Y Eeywo~a [Drcz (@(@i-1 | @, o) [po(@i—1 | 21))]
t=2

+ Eag,e, [log po(xo | 1)]
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For 2 <t < T, we are looking for Dxr, (q(@i—1 | @¢, o) |po(Te—1 | 1)),

By [Zhang et al., 2021]*,

|22
PRy

Drr(N(p1,Z1), N (p2,%2)) = 5 |log (357%1) + (p2 — 1) "85 (2 — pa) —

1
2
As a reminder,

i1~ N (@eo1; i (@i, @0), BeT)

If we suppose that pg(@i—1 | @) = A (o (x+,t), Do (s, ) and o (xt,t) = B,

D (q(@e—1 | e, ®0)[po(®i—1 | 21)) = = 5 | fie (e, 20) — po (e, 1)
t

10zhang, V., Liu, W., Chen, Z., Li, K., & Wang, J. (2021). On the properties of kullback-leibler divergence between gaussians. CoRR, abs/2102.05485. https://arxiv.org/abs/2102.05485
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Fort =T, Ez, [Drr(q(r | o)||pe(2r))] is neglected because

q(zr | o) = N (E(x0),v1 — ar Var(xo)) ~ A4(0,I)

For t = 0, ptheta(x1,1) is penalized to obtain data images in [0, 1]

The loss is finally,

T
1 .
L(6) = ), 25 | e (e, 20) — po(@e, )| — .oy [log po(wo | 1]
t=2 t

Problem: This loss is difficult to train, even for 2D distribution (see tutorials at this url'")

Uhttps: //github.com /acids- ircam /diffusion_models
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Denoting x+ = v/arxo + /1 — e with e, ~ A7(0,I),

1 2

2
20;

L (mt(mo,E) _

Ltfl = ]Ezo,s \/a—
t

%e) — po(xe(xo, €),t)
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Denoting x+ = v/arxo + /1 — e with e, ~ A7(0,I),

1 1 Bt :
Li 1 =Egg,e [%'f \/7671‘ (mt(mo,e) — \/17—7@8) — po(xt(xo, €), 1) ] .
1 Bt
po (e, t) = Jo: (mt(azo,s) — ﬁeo(mt,to
eo(xe,t) = vi-a (e — \/orpo (@, t))

Bt
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Denoting x+ = v/arxo + /1 — e with e, ~ A7(0,I),

2
Liy = Eag e [;tg \/% (mt(move) - \/167_757@6) — po(xi (2o, €), 1) } .

e 9) = —— 30 =~ t))

o @, 1) = \/OTt (mt Zo, € ma} T,
=
eo(xe,t) = % (e — \/orpo (@, t))
Lict = Eaoe | =20 e — eo(@i(o, )|

t—1 20¢ | 3020 (1 = @y) o(xt(xo, .
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Denoting x+ = v/arxo + /1 — e with e, ~ A7(0,I),

2
Liy = Eag e [;tg \/% (mt(move) - \/167_757@6) — po(xi (2o, €), 1) } .

e 9) = —— 30 =~ t))

o @, 1) = \/OTt (mt Zo, € ma} T,
=
eo(xe,t) = % (e — \/orpo (@, t))
Lict = Eaoe | =20 e — eo(@i(o, )|

t—1 20¢ | 3020 (1 = @y) o(xt(xo, .

Lsimple(g) = Et,mn,e [HE - 60(9%(3307 6)7 f)HQ] .

To convince yourself: Residual learning for denoiser.
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Discrete backward process

The backward process becomes:

1 1-— = .
= (mt - %eo(mt,t)) + Bize with z; ~ A4(0,T)
—,
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Discrete backward process

The backward process becomes:
rT ~ C/V(O, I)

1 170[[ 2 g
L1 = — | Tt — ——=¢€09 (X, 1 + Brze with 2z ~ A4(0, 1
t—1 \/07,5( t T 0( t )) Bz t WI t ( )

Ho et al., 2020 has the same results with:

(ETNJV(O,I)

1 1 — Ot .
1= T\ oo, t th z, ~ (0,1
Tio1 eT (mt mse(wt, )) + Bzt with z; (0,1)

. = l-w_
As a reminder,3; = 17(’;”] Bt
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L(6) = Euna 7100, lex = 03¢0, )|
= Ei[1,7],x0,e [H& — e (Vauxo + V1 — aues, t)HQ]

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~ N(0,1)
2 onq(_xo) 2: fort="T,...,1do
3: t~ IJ{?(%OYI‘)H({L - TY) 3 z~N(0,I)ift > 1,elsez=0
C e ’ o
5: Take gradient descent step on 4 X = \/%—t (xt - ﬁeg(xt,t)) + oz
Vo ||€ — ea(v/arxo + V1 — e, t)H2 5: end for
6: return xo

6: until converged
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Some implementation tricks: Exponential Moving Average (EMA)

During the training, for each training step,

9n+1 = (1 - H)9n+1 + Hen

with p = 0.9 for example.
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Time representation

Network architecture: UNET

Time representation: sinusoidal positional embeddings or random Fourier features and the network is a U-NET.

---» €g(xy,t)

1
1
1
] 1
I 1
] 1
] 1 ]
N QP

p——— ||
Time Representation

Fully-connected
Layers
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2.3. The continuous framework
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Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw )@
‘ scie function
dx = [£(x,t) — ¢° (¢)Vx log p:(x)| dt + g(t)dw —@

Reverse SDE (noise — data)

Image extracted from [Y. Song et al., 2023]
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Study of the continuous framework [Y. Song et al., 2023]*2

GROSSISSEMENT D'UNE FILTRATION

ET RETOURNEMENT DU TEMPS D'UNE DIFFUSION

E.PARDOUX

1. Introduction .

Soit { xt,o <t <1} un processus de diffusion dans Iﬂ

solution de 1'E.D.S:
dXt = b(t,Xt)dt + o (t,Xt)th

ol {wt,o <t <11} estun mouvement brownien standard dans R® .
Continuant le travail de [2 ], nous nous posons la question suivante:
existe-t-il un brownien standard dans ml (Wt,o <t <1 1} et des coef-
ficients { b(t,x), o(t,x);0 < t < 1,x € IRd) tels que le processus
Yt =X, _ /0 < t €1, soit solution de :

dax, = S(t,it)dt + E(t,it) aw

t t

Notre méthode consiste & identifier {Wt} ,en résolvant un
probléme de grossissement de filtration . On pourrait probablement
déduire le résultat ci-dessous de ceux de Jeulin [4] et de Jacod

1%ong, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. International Conference on
Learning Representations
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SDE in one slide

What means da: = b(t, x¢)dt + o(t)dws ?
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SDE in one slide

What means da: = b(t, x¢)dt + o(t)dws ?

t

¢
Ty = T + f b(s, xs)ds + J o(s)ds
0 0
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SDE in one slide

What means da: = b(t, x¢)dt + o(t)dws ?

¢ ¢
Ty = T + f b(s, xs)ds + J o(s)ds
0 0

Discretly,

x(t + At) — x(t) ~ Atb(t, z(t)) + o(t)VAtE:, with & ~ A(0,1)
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Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:

dxy = b(t,z)dt + o(t)dw,

where (w¢)o<i<1 is a standard Brownian motion.

Emile Pierret, supervised by Bruno Galerne Introduction to diffusion models for image generation and inpainti



Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:

dxy = b(t,z)dt + o(t)dw,

where (w¢)o<t<1 is a standard Brownian motion. Example:

iy = %ﬁ(t)mtdt + /B dw
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Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:

dxy = b(t,z)dt + o(t)dw,

where (w¢)o<t<1 is a standard Brownian motion. Example:
d:Et = 7*ﬁ wtdt + ’\/ d’wt

x(t + At)

Tr — 7B Atwt + \/ Atey
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Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:
dxy = b(t,z)dt + o(t)dw,

where (w¢)o<t<1 is a standard Brownian motion. Example:

iy = %ﬁ(t)mtdt + /B dw

2(t + At) = @ — %B(t)Atwt + /B Ate,

(1— %B(t)m)wt + /B0 Ate,

Emile Pierret, supervised by Bruno Galerne
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Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:

dxy = b(t,z)dt + o(t)dw,

where (w¢)o<t<1 is a standard Brownian motion. Example:

d:Et = 7*ﬁ wtdt + ’\/ d’wt

1
( + At) = Tt — 56 Atwt + '\/ tSt

= (= %B(t)At)act + 4/ B(t) Atey

\/1— IL{B,L +\/ t€r
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Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:

dxy = b(t,z)dt + o(t)dw,

where (w¢)o<t<1 is a standard Brownian motion. Example:

d:Et = 7*ﬁ wtdt + ’\/ d’wt

x(t + At)

Tr — %B Atwt + \/ Atey
(1— %B(t)m)wt + /B0 Ate,

\/1— IL{B,L +\/ t€r
A/ 1-— ﬂtﬂ)z =+ \/th
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Continuous framework

Forward process: Let (x:)o<t<1 be a diffusion process verifying the SDE:

dxy = b(t,z)dt + o(t)dw,

where (w¢)o<t<1 is a standard Brownian motion. Example:

d:Et = 7*ﬁ wtdt + ’\/ d’wt

(E(t + At) = Tt — %B Atwt + '\/ tSt
— (- %B(t)m)wt + /B0 Ate,

\/1— IL{B,L +\/ t€r
A/ 1-— ﬂtﬂ)z =+ \/th

It is DDPM ! With 8, = A3 ()
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Question from [Pardoux, 1986]13: Is there 5,6 such that ; = x1_; is solution of the reverse SDE:

d®; = b(t, T )dt + 7 (t)dw,

13pardoux, E. (1986). Grossissement d’une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48-55). Springer Berlin

Heidelberg

ised by Bruno Galerne i iffusion models for image generati



Question from [Pardoux, 1986]13: Is there E,E such that ; = x1_; is solution of the reverse SDE:

dx: = b(t, ®:)dt + o (t)dw;
Backward process: Under certain assumptions, @ is a weak solution of the following SDE, backward in time:
d(Bt = [b(t, wt) — a(t)QVm 1ngz (Et)] dt + U(t) [0%9) dﬁ;t

with w: = w; — wy — Stl V log ps(xs)ds which is a backward Brownian motion adapted to the filtration
oz v {ws —w,t < s<1})

1$ardoux. E. (1986). Grossissement d’une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48-55). Springer Berlin
Heidelberg
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Question from [Pardoux, 1986]13: Is there E,E such that ; = x1_; is solution of the reverse SDE:

dz; = b(t, ®)dt + 7 (t)dw:

Backward process: Under certain assumptions, @ is a weak solution of the following SDE, backward in time:

d(Bt = [b(t, wt) — a(t)QVm 1ngz (Et)] dt + U(t) ® dﬁ;t
with w: = w; — wy — Sl V log ps(xs)ds which is a backward Brownian motion adapted to the filtration
o(@e v {ws —w,t <s<1})

That means:
b(t,Tt) = —b(1 — ¢, %) — (1 — t)> Vg log p1_«(T)

F(t) = —o(1—t)

1
Wy = Wi_¢ — W1 —f V log ps(xs)ds
1t

Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48-55). Springer Berlin

Heidelberg
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Link with the discrete case

Ty & \Jarxo + /1 — ageo(x, t) and:

e — Varao|?

q(x¢ | o) exp 20 —)

Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022 Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
g Y g g
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Link with the discrete case

Ty & \Jarxo + /1 — ageo(x, t) and:

e — Varao|?

q(x¢ | o) exp 20 —)

T —aumo  eo(®,t)
1—-a; 1 -y

Vlogq(x: | o) =

Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022 Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
g Y g g
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Link with the discrete case

Ty ~ arxo + /1 — dreg (e, t) and:

s — «/atonQ
oC =y Ul
q(x¢ | o) exp 50— )
T —aumo  eo(®,t)

Vg q(z: | o) = — ~ T

go(xt,t)
T—ay

Consequently, — minimizes Ez, (|Vlogq(x: | To) — XHQ)

Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022 Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
g Y g g
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Link with the discrete case

Ty ~ arxo + /1 — dreg (e, t) and:

|ze — varao|
q(x¢ | o) exp ( 30 — )
T —aumo  eo(®,t)

Vg q(z: | o) = — ~ T

Consequently, f%a’t') minimizes Eq, (|V logg(z: | zo) — X|?)
and, sg(x¢,t) = —S"l%atf) ~ Vlog q(x:)

Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022 Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
g Y g g
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Link with the discrete case

Ty ~ arxo + /1 — dreg (e, t) and:

|2t — varzo|?
q(@¢ | @o)oc exp ( 20— )

T —aumo  eo(®,t)
1—-a; 1 -y

Viogg(z: | o) =

Consequently, 75"1%5’:) minimizes Eq, (|V logg(z: | zo) — X|?)
and, sg(x¢,t) = —S"l%&t) ~ Vlog q(x:)
1 = .
LTi—1 = (:Bt + (1 - oz,«,)s(g(mt,t)) + BtZz with zZt ~ </V(07I)

B

This is well explained in [Chung et al., 2022]*

Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
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With b(t, ) = —3B(t)x, o(t) = /B(t),

T, = [b(t, ®:) — 0(t)* Vi log pi(T)] dt + o (t)dw;

becomes:
dg, = 1B(t)mdt —B(t)Vazlogp:(T)dt +/B(t)dw,
T = +—Pso(@et) Bzt

And \/11773, ~ 1+ 3B, ﬁd, ~ Be(l+ 5Be) ~ B

Emile Pierret, supervised by Bruno Galerne
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To other approaches

Can be applied to other SDE as the model SMLD [Y. Song and Ermon, 2019]15 where dx; = 4/ d ;t O daw,

1%0ong, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems
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To other approaches

To a SDE dx¢ = f(x¢,t)dt + g(t)dw, can be associated an ODE: da = [ f(x,t) — 1g(t)*Va logp: ()] dt

Data Forward SDE Reverse SDE

@7 dz = f(z,t)dt + g(t)dw —»@— de = [f(2,1) - ¢ (t) V. log pi ()] dt + g(t)da

Image extracted from [Y. Song et al., 2023]*°

1%ong, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. International Conference on
Learning Representations
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2.4. Conclusion
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Conclusion

e Speed-up the convergence. [De Bortoli et al., 2021]*", [Dhariwal and Nichol, 2021]'®
The data distribution does not have density Bortoli, 2022'°
e Not presented here: DDIM [J. Song et al., 2021]%.

e Interesting tutorials: Song's code: https://github.com/yang-song/score_sde, 2D models:
https://github.com /acids-ircam /diffusion_models/tree/main
e Reading recommendation : [Ho et al., 2020]*, [Y. Song et al., 2023]*

IDe Bortoli, V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion schrodinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing
Systems

1% hariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems

1%ortoli, V. D. (2022). Convergence of denoising diffusion models under the manifold hypothesis. Transactions on Machine Learning Research

2050ng, J., Meng, C., & Ermon, S. (2021). Denoising diffusion implicit models. International Conference on Learning Representations

2lo, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems

2%ong, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. International Conference on
Learning Representations
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https://github.com/yang-song/score_sde
https://github.com/acids-ircam/diffusion_models/tree/main

Presentation of RePaint




Introduction

Various approaches:

e Re-train a score-based model. [Saharia et al., 2022]*

o Classifier quidance method. [Y. Song et al., 2023]*
e The replacement method, presented today. [Lugmayr et al., 2022]%,[Chung et al., 2022]*
e Pseudo-inverse reasonning [Choi et al., 2021]*

2%aharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., & Norouzi, M. (2022). Image super-resolution via iterative refinement. |EEE Transactions on Pattern Analysis and Machine Intelligence

2‘Eong, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2023). Score-based generative modeling through stochastic differential equations. International Conference on
Learning Representations

2‘r1_ugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. RePaint
26Chung‘ H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
2Tchoi, J., Kim, S., Jeong, Y., Gwon, Y., & Yoon, S. (2021). ILVR: Conditioning method for denoising diffusion probabilistic models. /LVR
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Diverse impaiting

Let suppose that @ ~ pdata, We suppose that there exists a mask m such that ma is known.
Objective: Sample & conditioned on mx = y.

Example:

_——
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Diverse impaiting

Let suppose that @ ~ pdata, We suppose that there exists a mask m such that ma is known.
Objective: Sample & conditioned on mx = y.

Example:

= &

Sample 1
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How to build a conditional diffusion model ? Y. Song et al., 2023

Let denote m =1—m
Objective: Sample xo conditioned on mxo = y.
Let suppose that we know a diffusion model for @y ~ pdata.

We would like to model the evolution of z; = T, for the forward and the backward processes.
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How to build a conditional diffusion model ? Y. Song et al., 2023

Let denote m =1—m
Objective: Sample xo conditioned on mxo = y.
Let suppose that we know a diffusion model for @y ~ pdata.

We would like to model the evolution of z; = T, for the forward and the backward processes.

The forward process is:

dZt = —%B(t)ztdt + \ B(t)dwt
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How to build a conditional diffusion model ? Y. Song et al., 2023

Let denote m =1—m
Objective: Sample x( conditioned on mxy = y.
Let suppose that we know a diffusion model for o ~ pdata.

We would like to model the evolution of z; = M, for the forward and the backward processes.

The forward process is:

dzt = —%B(t)ztdt + \/ B(t)dwt

The reversed SDE is conditionned on mao = y and becomes:

dz; = —%ﬁ(t)zt — B(t)Vzlogp (z: | mzo = y) | dt + /B(t)dw,
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How to build a conditional diffusion model ? Y. Song et al., 2023

Let denote m =1 —m
Objective: Sample x( conditioned on mxy = y.
Let suppose that we know a diffusion model for o ~ pdata.
We would like to model the evolution of z; = M, for the forward and the backward processes.
The forward process is:
dzy = —%B(t)ztdt + /B (t)dw,

The reversed SDE is conditionned on mao = y and becomes:

dzy = _%5(15)%5 — B)Vzlogp (z: | mxo = y) | dt + mdﬁt

Problem: V_.logp: (z: | mxo = y) is not tractable.
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Let denote m =1 —m

pt [zt | mxo = y]
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Let denote m =1 —m

pe [z | mao = y| = pi [z, | mao = y]
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Let denote m =1 —m

pe [z | mao = y| = pi [z, | mao = y]

= th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
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Let denote m =1 —m

pe [z | mzo = y|

et, supervised by Bruno Galerne

pe [ | mxo = y|

th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)

= Ep [maiimao=y] (pt [mx: | mzo = y, mx:] )
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Let denote m =1 —m

pe [z | mzo = y|
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pe [ | mxo = y|

th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)

= Ep [maiimao=y] (pt [mx: | mzo = y, mx:] )

%

Epifmatmazo=y] (pt [mx: | ma:] >
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Let denote m =1 —m

pe [z | mao = y| = pi [z, | mao = y]

= th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
= Ep [maiimao=y] (pt [mx: | mzo = y, mx:] )

~ Epi[matmao=y] (pt [maz: | ma:] >

~ p [mxe | ma]
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Let denote m =1 —m

pe [max, | mao = y]

I
=
I

Dt [z¢ | mao
= th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
= Ep, [maiimzo—y] (pt [mx: | mzo = y7mwt])
~ Ep, (ma¢|mao=y] (pt [mx: | ma:] )

~ p [mxe | ma]

Now,

log p: (x+) = logp: (M, x+)
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Let denote @ =1 —m
pe [2¢ | mzo = y] = pt [Ma: | mxo = y]
= th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
= Ep, [maiimzo—y] (pt [mx: | mzo = y7mwt])
~ Ep, (ma¢|mao=y] (pt [mx: | ma:] )

~ p [mxe | ma]

Now,

log p; (x¢) = log p; (Mxs, ) = logp: (Mx: | ma:) + log ps (M)
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Let denote @ =1 —m
pe [2¢ | mzo = y] = pt [Ma: | mxo = y]
= th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
= Ep, [maiimzo—y] (pt [mx: | mzo = y7mwt])
~ Ep, (ma¢|mao=y] (pt [mx: | ma:] )

~ p [mxe | ma]

Now,
log pi (@) = logp: (Mx, 1) = logp: (Mix: | ma:) + logpr (ma;)

Thus,

V2 logp: (M | mx:) = Vimg logpe (z4)
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Let denote @ =1 —m
pe [2¢ | mzo = y] = pt [Ma: | mxo = y]
= th [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
= Ep, [maiimzo—y] (pt [mx: | mzo = y7mwt])
~ Ep, (ma¢|mao=y] (pt [mx: | ma:] )

~ p [mxe | ma]

Now,
log pi (@) = logp: (Mx, 1) = logp: (Mix: | ma:) + logpr (ma;)

Thus,

V2 logp: (M | max:) = Vg logp: (2:) = MV logpe (x4)
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Let denote M =1 —m
pt [2¢ | mzo = y]| = pt [Mma: | mao = y|
= fpt [mx: | mxzo =y, ma:]| pr [max: | mzo = y] d(may)
= Ep, [ma;|mzo=y] (pt [ | mxo = ymwt])

~ Ep, [maimzo—y] (pt [mx: | ma:] )
~ p [mxe | ma]

Now,
logp: (@) = logp: (M, ) = logp (M, | ma,) + logpy (may)

Thus,

V2 logp: (M | max:) = Vg logp: (2:) = MV logpe (x4)

Consequently, the approached backward SDE becomes:

dzy = [—%ﬁﬁ(t)wt A e e
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How to build a conditional diffusion mode

Image extracted from [Lugmayr et al., 2022

2§%_ugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. RePaint
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1. Input: A masked image max =y

2. Sample xp ~ A4(0,1)

3. Fort=T,...,1
4. le e ~ I
Sempie e o A7, 1) e k""" is resampled at each step knowing:
known \/7y + (1 o (lt)
Sample z ~ A(0,I)ift > 1else z=0 -1 ~ A (Vzo, (1 — o))

t—1 = Jar (l‘t - \/%69(%&’0) + otz

5

6

7 wunknown _ 1
8 xi—1 = MmO TP + (1 — m) © ximyown
9

. Output: xo
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Let’s try it
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Let’s try it
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Let’s try it
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Time schedule

Time schedule

250 1. For each group of times of size j
2. Do r times:
200
3. Fors=T,...,T —j
150 j = 100
4. Do the backward from s to s — 1
100 5. Fors=T—3j,...,T
r =10
50 6. Do the forward from s to s + 1
o 7. Fors=T,...,T —j
0 500 1000 1500 2000 2500 3000 3500 4000 3. Do the backward from s to s — 1
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Learned variance

Problem: From 1000 steps to 18820 steps with j = r = 10
In DDPM, there are two choices for the variance schedule of the backward process: 3, of Bf,. Nichol and

Dhariwal, 2021 proposes to learn the variance as

So(x,t) = exp [vlog(8:) + (1 - v) log(B) |

This reduces the number of steps from 1000 steps to 250 steps.

Now: From 250 steps to 4570 steps with j = r = 10.
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” Justification” of the algorithm

From the article: "However, the sampling of the known pixels using is performed without considering the
generated parts of the image, which introduces disharmony. Although the model tries to harmonize the image
again in every step, it can never fully converge because the same issue occurs in the next step. Moreover, in
each reverse step, the maximum change to an image declines due to the variance schedule of 5;. Thus, the
method cannot correct mistakes that lead to disharmonious boundaries in the subsequent steps due to restricted
flexibility. As a consequence, the model needs more time to harmonize the conditional information """
with the generated information "™ """ in one step before advancing to the next denoising step.”
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Let’s try it
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Conclusion

e Free learning method is an interesting approach.
e Probably far from the true conditional distribution [Trippe et al., 2023]* .

o An other approach with manifold constraints [Chung et al., 2022]*.

29Tr7ppe‘ B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R., & Jaakkola, T. S. (2023). Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.

International Conference on Learning Representations

3%hung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. Advances in Neural Information Processing Systems (NeurlPS)
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The end

Thank you for your attention !
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Appendix

e Architecture of U-NET: 63
e (3 or B: 63
e Sketch of proof Pardoux, 1986 : 64
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We can read in Ho et al., 2020, " Experimentally, both ¢ = ; and o7 = B,, had similar results. The first choice
is optimal for &y ~ .4#°(0,I), and the second is optimal for & deterministically set to one point. These are the
two extreme choices corresponding to upper and lower bounds on reverse process entropy for data with
coordinatewise unit variance Sohl-Dickstein et al., 2015.”
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1. Wy = wy —wy — Stl V log ps(xs)ds is a backward Brownian motion adapted to the filtration
o(xe U {ws —w,t < s < 1}) because it is a local backward martingale.

2. Rewriting of the SDE in the Stratonovich sense.
3. Insertion of w; in the SDE.

4. Change of variable.
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