
Atelier Réseaux de neurones

Emile Pierret

Mercredi 19 juin 2024

1

Credits

Most of the slides from Charles Deledalle’s course “UCSD ECE285 Machine

learning for image processing” (30 × 50 minutes course)

www.charles-deledalle.fr/

https://www.charles-deledalle.fr/pages/teaching.php#learning

2

https://www.charles-deledalle.fr/pages/teaching.php
https://www.charles-deledalle.fr/pages/teaching.php
www.charles-deledalle.fr/
https://www.charles-deledalle.fr/pages/teaching.php#learning

AI and Machine Learning

Computer vision – Artificial Intelligence – Machine Learning

Definition (Oxford dictionary)

Artificial Intelligence, noun: the theory and development of computer

systems able to perform tasks normally requiring human intelligence, such as

visual perception, speech recognition, decision-making, and translation.

3

Computer vision – Artificial Intelligence – Machine Learning

Definition

Machine Learning, noun: type of Artificial Intelligence that provides

computers with the ability to learn without being explicitly programmed.

ML provides various techniques that can learn from and make predictions on

data. Most of them follow the same general structure:

(Source: Lucas Masuch) 4

Computer vision – Image segmentation

Computer vision – Image segmentation

(Source: Abhijit Kundu)

Goal: to partition an image into multiple segments such that pixels in a same

segment share certain characteristics (color, texture or semantic).

5

IP ∩ CV – Image colorization

Image colorization

(Source: Richard Zhang, Phillip Isola and Alexei A. Efros, 2016)

Goal: to add color to grayscale photographs.
6

IP ∩ CV – Style transfer

Style transfer

(Source: Gatys, Ecker and Bethge, 2015)

Goal: transfer the style of an image into another one.
7

Deep learning – Success stories

Success stories
Google Brains’s image super-resolution (Dahl et al., 2017).

“Google’s neural networks have achieved the dream

of CSI viewers”, The Guardian.
8

Image generation

Success stories
Face generation (Style GAN, (Karras et al., 2018) (NVIDIA)):

These people do not exist.

9

Computer vision – Image classification

Our goal: Image classification

Goal: to assign a given image into one of the predefined classes.

10

Machine learning – Learning from examples

Example of linear regression:

1 2 3 4

4

6

8

10

12

• Data: (xi, yi)1⩽i⩽N

• Model: {fθ : x 7→ ax+ b}θ=(a,b)∈R2

• Loss :

E
(
θ, (xi, yi)1⩽i⩽N

)
=

N∑
i=1

(fθ(xi)− yi)
2

• Objective:

θ⋆ = argminθ∈R2 E
(
θ, (xi, yi)1⩽i⩽N

)

11

Machine learning – Learning from examples

Example of linear regression:

1 2 3 4

4

6

8

10

12

• Data: (xi, yi)1⩽i⩽N

• Model: {fθ : x 7→ ax+ b}θ=(a,b)∈R2

• Loss :

E
(
θ, (xi, yi)1⩽i⩽N

)
=

N∑
i=1

(fθ(xi)− yi)
2

• Objective:

θ⋆ = argminθ∈R2 E
(
θ, (xi, yi)1⩽i⩽N

)

11

Machine learning – Learning from examples

Example of linear regression:

1 2 3 4

4

6

8

10

12

• Data: (xi, yi)1⩽i⩽N

• Model: {fθ : x 7→ ax+ b}θ=(a,b)∈R2

• Loss :

E
(
θ, (xi, yi)1⩽i⩽N

)
=

N∑
i=1

(fθ(xi)− yi)
2

• Objective:

θ⋆ = argminθ∈R2 E
(
θ, (xi, yi)1⩽i⩽N

)

11

Machine learning – Learning from examples

Example of linear regression:

1 2 3 4

4

6

8

10

12

• Data: (xi, yi)1⩽i⩽N

• Model: {fθ : x 7→ ax+ b}θ=(a,b)∈R2

• Loss :

E
(
θ, (xi, yi)1⩽i⩽N

)
=

N∑
i=1

(fθ(xi)− yi)
2

• Objective:

θ⋆ = argminθ∈R2 E
(
θ, (xi, yi)1⩽i⩽N

)

11

Machine learning – Learning from examples

Example of linear regression:

1 2 3 4

4

6

8

10

12

• Data: (xi, yi)1⩽i⩽N

• Model: {fθ : x 7→ ax+ b}θ=(a,b)∈R2

• Loss :

E
(
θ, (xi, yi)1⩽i⩽N

)
=

N∑
i=1

(fθ(xi)− yi)
2

• Objective:

θ⋆ = argminθ∈R2 E
(
θ, (xi, yi)1⩽i⩽N

)

11

Machine learning – Learning from examples

Example of linear regression:

1 2 3 4

4

6

8

10

12

• Data: (xi, yi)1⩽i⩽N

• Model: {fθ : x 7→ ax+ b}θ=(a,b)∈R2

• Loss :

E
(
θ, (xi, yi)1⩽i⩽N

)
=

N∑
i=1

(fθ(xi)− yi)
2

• Objective:

θ⋆ = argminθ∈R2 E
(
θ, (xi, yi)1⩽i⩽N

)

11

Machine learning – Learning from examples

Learning from examples

3 main ingredients

1 Training set / examples:

{x1,x2, . . . ,xN}

2 Machine or model:

x→ f(x; θ)︸ ︷︷ ︸
function / algorithm

→ y︸︷︷︸
prediction

θ: parameters of the model

3 Loss, cost, objective function / energy:

argmin
θ

E(θ;x1,x2, . . . ,xN)

12

Machine learning – Learning from examples

Learning from examples

3 main ingredients

1 Training set / examples:

{x1,x2, . . . ,xN}

2 Machine or model:

x→ f(x; θ)︸ ︷︷ ︸
function / algorithm

→ y︸︷︷︸
prediction

θ: parameters of the model

3 Loss, cost, objective function / energy:

argmin
θ

E(θ;x1,x2, . . . ,xN)

12

Machine learning – Learning from examples

Learning from examples

3 main ingredients

1 Training set / examples:

{x1,x2, . . . ,xN}

2 Machine or model:

x→ f(x; θ)︸ ︷︷ ︸
function / algorithm

→ y︸︷︷︸
prediction

θ: parameters of the model

3 Loss, cost, objective function / energy:

argmin
θ

E(θ;x1,x2, . . . ,xN)

12

Machine learning – Learning from examples

Learning from examples

3 main ingredients

1 Training set / examples:

{x1,x2, . . . ,xN}

2 Machine or model:

x→ f(x; θ)︸ ︷︷ ︸
function / algorithm

→ y︸︷︷︸
prediction

θ: parameters of the model

3 Loss, cost, objective function / energy:

argmin
θ

E(θ;x1,x2, . . . ,xN)

12

Machine learning – Learning from examples

Learning from examples

Tools:

{
Data ↔ Statistics

Loss ↔ Optimization

Goal: to extract information from the training set

• relevant for the given task,

• relevant for other data of the same kind.

13

Data

Machine learning – Terminology

Terminology

Sample (Observation or Data): item to process (e.g., classify). Example: an

individual, a document, a picture, a sound, a video. . .

Training set: Set of data used to discover potentially predictive relationships.

Testing set: Set used to assess the performance of a model (no feedback).

Label (Output): The class or outcome assigned to a sample. The actual

prediction is often denoted by y and the desired/targeted class by d or t.

14

Machine learning – Learning approaches

Learning approaches

Unsupervised learning: Discovering patterns in unlabeled

data. Example: cluster similar documents based on the

text content.

Supervised learning: Learning with a labeled training set.

Example: email spam detector with training set of already

labeled emails.

Semisupervised learning: Learning with a small amount of

labeled data and a large amount of unlabeled data.

Example: web content and protein sequence classifications.

Reinforcement learning: Learning based on feedback or

reward. Example: learn to play chess by winning or losing.

(Source: Jason Brownlee and Lucas Masuch)
15

The model: artificial neural network

Machine learning – Timeline

Timeline of (deep) learning

1974 Backpropagation

1995
SVM reigns

Convolution Neural Networks for
Handwritten Recognition

1998

2006
Restricted
Boltzmann

Machine

1958 Perceptron

1969

Perceptron criticized

Google Brain Project on
16k Cores

2012

2012
AlexNet wins

ImageNet

Perceptrons

book

~1980

Multilayer

network Support Vector Machines

feature 1

fe
a
tu

re
 2

Support Vectors

Maximal

Margin

Hyperplane

X1

X2

X3

X4

W11

W12

W13

W14

f(x)

Input Weights Sum
Activation

Function

arti cial

Neuron

awkward silence (AI winter)

(Source: Lucas Masuch & Vincent Lepetit) 16

Perceptron

Machine learning – Perceptron

Perceptron

1958 Perceptron

1969

Perceptron criticized

Perceptrons

book

X1

X2

X3

X4

W11

W12

W13

W14

f(x)

Input Weights Sum
Activation

Function

arti cial

Neuron

(Source: Lucas Masuch & Vincent Lepetit) 17

Machine learning – Perceptron

Perceptron (Frank Rosenblatt, 1958)

First binary classifier based on supervised learning (discrimination).

Foundation of modern artificial neural networks.

At that time: technological, scientific and philosophical challenges.

18

Machine learning – Perceptron – Representation

Representation of the Perceptron

Parameters of the perceptron

• wk: synaptic weights

• b: bias

}
←− real parameters to be estimated.

Training = adjusting the weights and biases

19

Machine learning – Perceptron – Inspiration

The origin of the Perceptron

Takes inspiration from the visual system known for its ability to learn patterns.

• When a neuron receives a stimulus

with high enough voltage, it emits

an action potential (aka, nerve

impulse or spike). It is said to fire.

• The perceptron mimics this

activation effect: it fires only when∑
i

wixi + b > 0

y = sign(w0x0 + w1x1 + w2x2 + w3x3 + b)︸ ︷︷ ︸
f(x;w)

=

{
+1 for the first class

−1 for the second class

20

Machine learning – Perceptron – Principle

1 Data are represented as vectors:

2 Collect training data with positive and negative examples:

(Source: Vincent Lepetit) 21

Machine learning – Perceptron – Principle

Dot product:

⟨w, x⟩ =
d∑

i=1

wixi

= wTx

3 Training: find w and b so that:

• ⟨w, x⟩+ b is positive for positive samples x,
• ⟨w, x⟩+ b is negative for negative samples x.

(Source: Vincent Lepetit) 21

Machine learning – Perceptron – Principle

Dot product:

⟨w, x⟩ =
d∑

i=1

wixi

= wTx

3 Training: find w and b so that:

• ⟨w, x⟩+ b is positive for positive samples x,
• ⟨w, x⟩+ b is negative for negative samples x.

The equation ⟨w, x⟩+ b = 0 defines a hyperplane.

The hyperplane acts as a linear separator.

w is a normal vector to the hyperplane.

(Source: Vincent Lepetit) 21

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if ⟨w, x⟩+ b is positive,
• and negative if ⟨w, x⟩+ b is negative.

(Source: Vincent Lepetit) 21

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if ⟨w, x⟩+ b is positive,

• and negative if ⟨w, x⟩+ b is negative.

(Source: Vincent Lepetit) 21

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if ⟨w, x⟩+ b is positive,
• and negative if ⟨w, x⟩+ b is negative.

(Source: Vincent Lepetit) 21

Machine learning – Perceptron – Perceptrons book

Perceptrons book (Minsky and Papert, 1969)

A perceptron can only classify data points that are linearly separable:

+1

+1

Seen by many as a justification to stop research on perceptrons.

(Source: Vincent Lepetit)

22

Machine learning – Artificial neural network

Artificial neural network

(Source: Lucas Masuch & Vincent Lepetit) 23

Machine learning – Artificial neural network

Artificial neural network

• Supervised learning method initially inspired by

the behavior of the human brain.

• Consists of the inter-connection of several

small units (just like in the human brain).

• Introduced in the late 50s, very popular in the

90s, reappeared in the 2010s with deep

learning.

• Also referred to as Multi-Layer Perceptron (MLP).

• Historically used after feature extraction.

24

Machine learning – ANN

Artificial neural network / Multilayer perceptron / NeuralNet

• Inter-connection of several artificial

neurons (also called nodes or units).

• Each level in the graph is called a layer:

• Input layer,
• Hidden layer(s),
• Output layer.

• Each neuron in the hidden layers acts as a

classifier / feature detector.

wk
ij synaptic weight between previous node j and next node i at layer k.

gk are any activation function applied to each coefficient of its input vector.

The matrices Wk and biases bk are learned from labeled training data.

25

Machine learning – ANN

Artificial neural network / Multilayer perceptron / NeuralNet

h1 = g1
(
w1

11x1 + w1
12x2 + w1

13x3 + b11
)

h2 = g1
(
w1

21x1 + w1
22x2 + w1

23x3 + b12
)

h3 = g1
(
w1

31x1 + w1
32x2 + w1

33x3 + b13
)

h4 = g1
(
w1

41x1 + w1
42x2 + w1

43x3 + b14
)

h = g1 (W1x+ b1)

y1 = g2
(
w2

11h1 + w2
12h2 + w2

13h3 + w2
14h4 + b21

)
y2 = g2

(
w2

21h1 + w2
22h2 + w2

23h3 + w2
24h4 + b22

)

y = g2 (W2h+ b2)

wk
ij synaptic weight between previous node j and next node i at layer k.

gk are any activation function applied to each coefficient of its input vector.

The matrices Wk and biases bk are learned from labeled training data.

26

Machine learning – ANN

Artificial neural network / Multilayer perceptron / NeuralNet

h1 = g1
(
w1

11x1 + w1
12x2 + w1

13x3 + b11
)

h2 = g1
(
w1

21x1 + w1
22x2 + w1

23x3 + b12
)

h3 = g1
(
w1

31x1 + w1
32x2 + w1

33x3 + b13
)

h4 = g1
(
w1

41x1 + w1
42x2 + w1

43x3 + b14
)

h = g1 (W1x+ b1)

y1 = g2
(
w2

11h1 + w2
12h2 + w2

13h3 + w2
14h4 + b21

)
y2 = g2

(
w2

21h1 + w2
22h2 + w2

23h3 + w2
24h4 + b22

)
y = g2 (W2h+ b2)

wk
ij synaptic weight between previous node j and next node i at layer k.

gk are any activation function applied to each coefficient of its input vector.

The matrices Wk and biases bk are learned from labeled training data.
26

Machine learning – ANN

Artificial neural network / Multilayer perceptron

It can have 1 hidden layer only (shallow network),

It can have more than 1 hidden layer (deep network),

each layer may have a different size, and

hidden and output layers often have different activation functions.
27

Machine learning – ANN – Activation functions

Activation functions

Linear units: g(a) = a

y = WLhL−1 + bL

hL−1 = WL−1hL−2 + bL−1

y = WLWL−1hL−2 +WLbL−1 + bL

y = WL . . .W1x+

L−1∑
k=1

WL . . .Wk+1bk + bL

We can always find an equivalent network without hidden units,

because compositions of affine functions are affine.

In general, non-linearity is needed to learn complex (non-linear)

representations of data, otherwise the NN would be just a linear function.

Otherwise, back to the problem of nonlinearly separable datasets.

28

Machine learning – ANN – Activation functions

Activation functions

“Modern” units:

g(a) = max(a, 0)︸ ︷︷ ︸
ReLU

or g(a) = log(1 + ea)︸ ︷︷ ︸
Softplus

Most neural networks use ReLU

(Rectifier linear unit) – max(a, 0) –

nowadays for hidden layers, since it

trains much faster, is more expressive

than logistic function and prevents the

gradient vanishing problem.

(Source: Lucas Masuch)
29

Machine learning – ANN

Neural networks solve non-linear separable problems

(Source: Vincent Lepetit) 30

Machine learning – UAT

Universal Approximation Theorem
(Hornik et al, 1989; Cybenko, 1989)

Any continuous function f : K ⊂ RN → RK can be uniformly approximated

by a feedforward shallow network (i.e., with 1-hidden layer only) with a

sufficient number of neurons in the hidden layer.

• Works if and only if g is not polynomial (and thus non linear).
• The theorem does not say how large the network needs to be.
• No guarantee that the training algorithm will be able to train the network.

31

Machine learning – ANN

The architecture of the network defines the shape of the separator

... ...

0

1

0 1

0

1

0 1

0

1

0 1

Separation

{x s.t. P (C1|x) = P (C2|x)}

Complexity/capacity of the

network

⇒
Trade-off between

generalization and overfitting.

32

Optimization

ANN – Optimization

• The parameters of the neural network are

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training the network = minimizing the training loss E(θ)

Objective: min
θ

E(θ)

⇒ ∇E(θ) =
(

∂E(θ)
∂W1

∂E(θ)
∂b1

. . . ∂E(θ)
∂WL

∂E(θ)
∂bL

)T

= 0

• Solution: no closed-form solutions ⇒ use (stochastic) gradient descent.

33

ANN – Optimization

• The parameters of the neural network are

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training the network = minimizing the training loss E(θ)

Objective: min
θ

E(θ)

⇒ ∇E(θ) =
(

∂E(θ)
∂W1

∂E(θ)
∂b1

. . . ∂E(θ)
∂WL

∂E(θ)
∂bL

)T

= 0

• Solution: no closed-form solutions ⇒ use (stochastic) gradient descent.

33

ANN – Optimization

• The parameters of the neural network are

θ = (W1, b1,W2, b2, . . . ,WL, bL)

• Training the network = minimizing the training loss E(θ)

Objective: min
θ

E(θ)

⇒ ∇E(θ) =
(

∂E(θ)
∂W1

∂E(θ)
∂b1

. . . ∂E(θ)
∂WL

∂E(θ)
∂bL

)T

= 0

• Solution: no closed-form solutions ⇒ use (stochastic) gradient descent.

33

The Stochastic Gradient Descent (SGD)

Denoting T the training dataset, the loss functions are of the form

E(W) =
∑

(xi,di)

L(fθ(x
i);di)

where fθ is the neural network.

Example: E(W) =
∑

(xi,di) ∥fθ(x
i)− di)∥2

Algorithm: (stochastic) gradient descent for E(w)

• Initialize θ0 randomly

• For 0 ⩽ k ⩽ N ,

• For all (x,d) ∈ T (or a random subset T ′ ⊂ T)
• Update: θ ← θ − γ∇θL(fθ(x);d)

An iteration overall the dataset is called an epoch.

34

The Stochastic Gradient Descent (SGD)

Denoting T the training dataset, the loss functions are of the form

E(W) =
∑

(xi,di)

L(fθ(x
i);di)

where fθ is the neural network.

Example: E(W) =
∑

(xi,di) ∥fθ(x
i)− di)∥2

Algorithm: (stochastic) gradient descent for E(w)

• Initialize θ0 randomly

• For 0 ⩽ k ⩽ N ,

• For all (x,d) ∈ T (or a random subset T ′ ⊂ T)
• Update: θ ← θ − γ∇θL(fθ(x);d)

An iteration overall the dataset is called an epoch.

34

The Stochastic Gradient Descent (SGD)

Denoting T the training dataset, the loss functions are of the form

E(W) =
∑

(xi,di)

L(fθ(x
i);di)

where fθ is the neural network.

Example: E(W) =
∑

(xi,di) ∥fθ(x
i)− di)∥2

Algorithm: (stochastic) gradient descent for E(w)

• Initialize θ0 randomly

• For 0 ⩽ k ⩽ N ,

• For all (x,d) ∈ T (or a random subset T ′ ⊂ T)
• Update: θ ← θ − γ∇θL(fθ(x);d)

An iteration overall the dataset is called an epoch.

34

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

W1, b1

h2
1

h2
2

h2
3

h2
N2W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

y1

y2

yK

WL, bL

d1

d2

dK

d

E = L(y;d)

Backward phaseForward phase

Input Layer Hidden Layers Output Layer Label

35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

y1

y2

yK

WL, bL

d1

d2

dK

d

E = L(y;d)

Backward phaseForward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

y1

y2

yK

WL, bL

d1

d2

dK

d

E = L(y;d)

Backward phaseForward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

y1

y2

yK

WL, bL

d1

d2

dK

d

E = L(y;d)

Backward phaseForward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

y1

y2

yK

aL

y = hL

WL, bL

d1

d2

dK

d

E = L(y;d)

Backward phaseForward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

y1

y2

yK

aL

y = hL

WL, bL

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseForward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

y1

y2

yK

aL

y = hL

eL = ∇L(y;d)
δL

WL, bL

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseBackward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

y1

y2

yK

aL

y = hL

eL = ∇L(y;d)
δL

WL, bL

∇bLE

∇WLE

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseBackward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

eL−1

δL−1

y1

y2

yK

aL

y = hL

eL = ∇L(y;d)
δL

WL, bL

∇bLE

∇WLE

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseBackward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

W1, b1

h2
1

h2
2

h2
3

h2
N2

a2

h2

e2

δ2

W2, b2

∇b2E

∇W2E

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

eL−1

δL−1

y1

y2

yK

aL

y = hL

eL = ∇L(y;d)
δL

WL, bL

∇bLE

∇WLE

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseBackward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

e1

δ1

W1, b1

∇b1E

∇W1E

h2
1

h2
2

h2
3

h2
N2

a2

h2

e2

δ2

W2, b2

∇b2E

∇W2E

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

eL−1

δL−1

y1

y2

yK

aL

y = hL

eL = ∇L(y;d)
δL

WL, bL

∇bLE

∇WLE

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseBackward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

Error backpropagation

x1

x2

xN

x = h0

e0

h1
1

h1
2

h1
3

h1
N1

a1 = W1h0 + b1

h1 = g1(a1)

e1

δ1

W1, b1

∇b1E

∇W1E

h2
1

h2
2

h2
3

h2
N2

a2

h2

e2

δ2

W2, b2

∇b2E

∇W2E

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

aL−1

hL−1

eL−1

δL−1

y1

y2

yK

aL

y = hL

eL = ∇L(y;d)
δL

WL, bL

∇bLE

∇WLE

d1

d2

dK

d

E = L(y;d)

Loss:

E = L(y;d)

Backward phaseBackward phase

Input Layer Hidden Layers Output Layer Label
35

How is computed the gradient for the SGD ?

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

h1

W1, b1

h2
1

h2
2

h2
3

h2
N2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

hL−1

y1

y2

yK

y = hL

WL, bL

d1

d2

dK

d

Loss: E = L(y;d)

Forward pass

Initialization:

h0 = x

for layer k = 1 to L do
Linear unit:

ak = Wkhk−1 + bk

(stored)

Componentwise non-linear activation:

hk = gk(ak)

(stored)

end

Output layer:

y = hL

Compute loss:

E = L(y;d)

Backward pass

Initialization: Gradient of output layer:

∇hLE = ∇L(y;d)
for layer k = L to 1 do

Componentwise gain of error:

δk = ∇akE = ∇hkE ⊙ g′k(ak)

Gradient of layer bias:

∇bkE = δk

Gradient of weights:

∇WkE = δkh
T
k−1

Gradient of previous hidden layer:

∇hk−1E = W T
k δk

end 36

How is computed the gradient for the SGD ?

x1

x2

xN

x = h0

h1
1

h1
2

h1
3

h1
N1

h1

W1, b1

h2
1

h2
2

h2
3

h2
N2

h2

W2, b2

hL−1
1

hL−1
2

hL−1
3

hL−1
NL−1

hL−1

y1

y2

yK

y = hL

WL, bL

d1

d2

dK

d

Loss: E = L(y;d)

Forward pass

Initialization:

h0 = x

for layer k = 1 to L do
Linear unit:

ak = Wkhk−1 + bk (stored)

Componentwise non-linear activation:

hk = gk(ak) (stored)

end

Output layer:

y = hL

Compute loss:

E = L(y;d)

Backward pass

Initialization: Gradient of output layer:

∇hLE = ∇L(y;d)
for layer k = L to 1 do

Componentwise gain of error:

δk = ∇akE = ∇hkE ⊙ g′k(ak)

Gradient of layer bias:

∇bkE = δk

Gradient of weights:

∇WkE = δkh
T
k−1

Gradient of previous hidden layer:

∇hk−1E = W T
k δk

end 36

To the generative models

37

Questions?

Sources, images courtesy and acknowledgment

• Charles Deledalle • V. Lepetit • L. Masuch

37

Convolutional Neural Network (CNN)

Deep learning

What is deep learning?

• Representation learning using artificial neural networks

→ Learning good features automatically from raw data.

→ Exceptionally effective at learning patterns.

• Learning representations of data with multiple levels of abstraction

→ hierarchy of layers that mimic the neural networks of our brain,

→ cascade of non-linear transforms.

G
o
o
g
le
’s

d
et
ec
ti
o
n
N
N

• If you provide the system with tons of information, it begins to understand

it and responds in useful ways.

(Source: Caner Hazırbaş & Lucas Masuch) 38

Deep learning

How to teach a machine?

Good representations are often very complex to define.

(Source: Caner Hazırbaş)

39

Deep learning

Inspired by the Brain

• The first hierarchy of neurons that receives information in the visual cortex

are sensitive to specific edges while brain regions further down the visual

pipeline are sensitive to more complex structures such as faces.

• Our brain has lots of neurons connected together and the strength of the

connections between neurons represents long term knowledge.

• One learning algorithm hypothesis: all significant mental algorithms are

learned except for the learning and reward machinery itself.

(Source: Lucas Masuch)

40

Deep learning

Deep learning – Basic architecture

(Source: Lucas Masuch) 41

Deep learning

Trainable feature hierarchy

• Hierarchy of representations with increasing levels of abstraction.
• Each stage is a kind of trainable feature transform.

Image recognition

• Pixel → edge → texton → motif → part → object

Text

• Character → word → word group → clause → sentence → story

Speech

• Sample → spectral band → sound → ... → phone → phoneme → word

Deep Learning addresses the problem of

learning hierarchical representations.

(Source: Yann LeCun & Marc’Aurelio Ranzato)

42

Deep learning

Deep learning – Feature hierarchy

• It’s deep if it has more than one stage of non-linear feature transformation

Low-Level

Feature

Feature visualization of convolutional net

trained on ImageNet from (Zeiler & Fergus, 2013)

(Source: Yann LeCun & Marc’Aurelio Ranzato) 43

Deep learning

Deep learning – Feature hierarchy

Each layer progressively extracts higher level features of the input until the final

layer essentially makes a decision about what the input shows. The more layers

the network has, the higher level features it will learn.

(Source: Andrew Ng & Lucas Masuch & Caner Hazırbaş)

44

Deep learning

Deep learning – Training

Today’s trend: make it deeper and deeper

• 2012: 8 layers (AlexNet – Krizhevsky et al., 2012)

• 2014: 19 layers (VGG Net – Simonyan & Zisserman, 2014)

• 2014: 22 layers (GoogLeNet – Szegedy et al., 2014)

• 2015: 152 layers (ResNet – He et al., 2015)

• 2016: 201 layers (DenseNet – Huang et al., 2017)

But remember, with back-propagation:

• We got stuck at local optima or saddle points

• The learning time does not scale well

• it is very slow for deep networks and can be unstable.

How did networks get so deep? First, why does backprop fail?

45

Deep learning

Deep learning – Gradient vanishing problems

Back-propagation and gradient vanishing problems

Update: Wk = Wk − γ∇WkE with ∇WkE = δkh
T
k−1

where δk = ∇akE = ∇hkE ⊙ g′k(ak).

• With deep networks, the gradient vanishes quickly.

• Unfortunately, this arises even though we are far from a solution.

• The updates become insignificant, which leads to slow training rates.

• This strongly depends on the shape of g′(a).

• The gradient may also explode leading to instabilities:

→ gradient exploding problem.

46

Deep learning

Deep learning – Gradient vanishing problem

As the network gets deeper, the landscape of E becomes:
• very hilly → lots of stationary points,

• with large plateaus → gradient vanishing problem,

• and delimited by cliffs → gradient exploding problem.

So, what has changed? (see later for recipes...)
47

CNN for image processing

Convolutional neural networks

What are CNNs?

• Essentially neural networks that use convolution in place of general matrix

multiplications at least for the first layers.

• CNNs are designed to process the data in the form of multidimensional

arrays/tensors (e.g., 2D images, 3D video/volumetric images).

• Composed of series of stages: convolutional layers and pooling layers.

• Units connected to local regions in the feature maps of the previous layer.

• Do not only mimic the brain connectivity but also the visual cortex.

48

Convolutional neural networks

CNNs are composed of three main ingredients:

1 Local receptive fields

• hidden units connected only to a small region of their input,

2 Shared weights

• same weights and biases for all units of a hidden layer,

3 Pooling

• condensing hidden layers.

but also

4 Redundancy: more units in a hidden layer than inputs,

5 Sparsity: units should not all fire for the same stimulus.

All take inspiration from the visual cortex.
49

Convolutional neural networks

Local receptive fields → Locally connected layer

• Each unit in a hidden layer can see only a small neighborhood of its input,

• Captures the concept of spatiality.

Fully connected Locally connected

For a 200× 200 image and 40,000 hidden units

• Fully connected: 1.6 billion parameters,
• Locally connected (10× 10 fields): 4 million parameters.

50

Convolutional neural networks

Self-similar receptive fields → Shared weights

• Detect features regardless of position (translation invariance),

• Use convolutions to learn simple input patterns.

Locally connected Shared weights

For a 200× 200 image and 40,000 hidden units

• Locally connected (10× 10 fields): 4 million parameters,
• & Shared weights: 100 parameters (independent of image size).

51

Convolutional neural networks

Specialized cells → Filter bank

• Use a filter bank to detect multiple patterns at each location,

• Multiple convolutions with different kernels,

• Result is a 3d array, where each slice is a feature map.

Shared weights Filter bank

(1 input → 1 feature map) (1 input → 2 feature maps)

• 10× 10 fields & 10 output features: 1,000 parameters.
52

Convolutional neural networks

Hierarchy → inputs of deep layers are themselves 3d arrays

• Learn to filter each channel such that their sum detects a relevant feature,

• Repeat as many times as the desired number of output features should be.

Multi-input filter Multi-input filter bank
(2 inputs → 1 feature map) (2 inputs → 3 feature maps)

• Remark: these are not 3d convolutions, but sums of 2d convolutions.

• 10× 10 fields & 10 inputs & 10 outputs: 10,000 parameters.

53

Convolutional neural networks

Overcomplete → increase the number of channels

(Tensor representation)

• Redundancy: increase the number of channels between layers.

• Padding: n× n conv + valid → width and height decrease by n− 1.

• Can we control even more the number of simple cells?

54

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

55

Convolutions

+bias

→ For an input size (M,N), the output size of convolution by a kernel of size

2k + 1 is (M − 2k,N − 2k)

55

Convolutions with channels

56

Convolutions with channels

56

Convolutions with channels

56

Convolutions with channels

56

Convolutions with channels

56

Convolutions with channels

56

Convolutions with channels

56

Convolutions with several out channels

These convolutions are of the form Wx+ b but the number of parameters is

the size of the filters/kernels.

57

Convolutions with several out channels

These convolutions are of the form Wx+ b but the number of parameters is

the size of the filters/kernels.

57

Convolutional neural networks

Pooling layer

• Used after each convolution layer to mimic complex cells,

• Unlike striding, reduce the size by aggregating inputs:

• Partition the image in a grid of z × z windows (usually z = 2),
• max-pooling: take the max in the window

• no parameters to learn

58

Convolutional neural networks

Pooling layer

• Makes the output unchanged even if the input is a little bit changed,

• Allows some invariance/robustness with respect to the exact position,

• Simplifies/Condenses/Summarizes the output from hidden layers,

• Increases the effective receptive fields (with respect to the first layer.)

59

Convolutional neural networks

All concepts together

60

Convolutional neural networks

All concepts together with tensor representation

CNN: Alternate:

Conv + ReLU + pooling

End of network:

Plug a standard neural network:

Fully connected hidden layers

(linear) + ReLU

Full network:

• CNN: Extract features specific to spatial

data

• Fully connected part: Use CNN features

for specific regression/classification task

• Training: Learn regression/classification

and feature extraction jointly

61

Convolutional neural networks

All concepts together with tensor representation

CNN: Alternate:

Conv + ReLU + pooling

End of network:

Plug a standard neural network:

Fully connected hidden layers

(linear) + ReLU

Full network:

• CNN: Extract features specific to spatial

data

• Fully connected part: Use CNN features

for specific regression/classification task

• Training: Learn regression/classification

and feature extraction jointly

61

Convolutional neural networks

All concepts together with tensor representation

CNN: Alternate:

Conv + ReLU + pooling

End of network:

Plug a standard neural network:

Fully connected hidden layers

(linear) + ReLU

Full network:

• CNN: Extract features specific to spatial

data

• Fully connected part: Use CNN features

for specific regression/classification task

• Training: Learn regression/classification

and feature extraction jointly

61

Conclusion: How to perform image classification ?

Our goal: Image classification

Goal: to assign a given image into one of the predefined classes.

62

ANN – Learning

Training process

(Source: Lucas Masuch) 63

Our goal

64

Our goal

We want a CNN fθ such that for a given input image x:

fθ(x) =


P (x ∈ C1)

P (x ∈ C2)
...

P (x ∈ Cn)



The last layer will have an activation function softmax such that:

softmax (zi) =
ezi∑C
j=1 e

zj
≈ P(x ∈ Ci)

The loss ”Cross-entropy” is built to make that the training leads to this output.

(see multivariate regression for explaination)

65

Our goal

We want a CNN fθ such that for a given input image x:

fθ(x) =


P (x ∈ C1)

P (x ∈ C2)
...

P (x ∈ Cn)


The last layer will have an activation function softmax such that:

softmax (zi) =
ezi∑C
j=1 e

zj
≈ P(x ∈ Ci)

The loss ”Cross-entropy” is built to make that the training leads to this output.

(see multivariate regression for explaination)

65

Our goal

We want a CNN fθ such that for a given input image x:

fθ(x) =


P (x ∈ C1)

P (x ∈ C2)
...

P (x ∈ Cn)


The last layer will have an activation function softmax such that:

softmax (zi) =
ezi∑C
j=1 e

zj
≈ P(x ∈ Ci)

The loss ”Cross-entropy” is built to make that the training leads to this output.

(see multivariate regression for explaination)

65

Conclusion: How to perform image classification ?

• Consider a labeled training dataset

• Consider a CNN followed by a standard neural network (as shown before)

• Train it to minimize the Cross-entropy loss via stochastic gradient descent

(SGD).

• Enjoy !

• Link to the tutorial

66

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Conclusion: How to perform image classification ?

• Consider a labeled training dataset

• Consider a CNN followed by a standard neural network (as shown before)

• Train it to minimize the Cross-entropy loss via stochastic gradient descent

(SGD).

• Enjoy !

• Link to the tutorial

66

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Conclusion: How to perform image classification ?

• Consider a labeled training dataset

• Consider a CNN followed by a standard neural network (as shown before)

• Train it to minimize the Cross-entropy loss via stochastic gradient descent

(SGD).

• Enjoy !

• Link to the tutorial

66

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Conclusion: How to perform image classification ?

• Consider a labeled training dataset

• Consider a CNN followed by a standard neural network (as shown before)

• Train it to minimize the Cross-entropy loss via stochastic gradient descent

(SGD).

• Enjoy !

• Link to the tutorial

66

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Questions?

Sources, images courtesy and acknowledgment

• Charles Deledalle • V. Lepetit • L. Masuch

66

	AI and Machine Learning
	Data
	The model: artificial neural network
	Perceptron
	Optimization
	Convolutional Neural Network (CNN)
	CNN for image processing

