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Introduction to generative models



What is a generative model ?
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Variational Auto-Encoder (VAE)

Image extracted from this url
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https://medium.com/@elzettevanrensburg/generating-the-intuition-behind-variational-auto-encoders-vaes-c7d2f8631a87


Generative Aversarial Netowrk (GAN)

Image extracted from this url

Émile Pierret, supervised by Bruno Galerne Introduction to diffusion models and study of their restriction to the Gaussian case May, 27th, CANUM 2024 4 / 41

https://www.microsoft.com/en-us/research/blog/how-can-generative-adversarial-networks-learn-real-life-distributions-easily/


Image extrated from [Xiao et al., 2022]1

• Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural

Information Processing Systems

1Xiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion GANs. International Conference on Learning Representations
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Main idea
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The forward process of Denoising diffusion models

pdata p1
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The forward process of Denoising diffusion models

pdata p2
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The forward process of Denoising diffusion models

pdata p3
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The forward process of Denoising diffusion models

pdata p4
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The forward process of Denoising diffusion models

pdata p5
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The forward process of Denoising diffusion models

pdata p6
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The forward process of Denoising diffusion models

pdata p7
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Diffusion models through SDE



Diffusion models through SDE

Image extracted from [Song et al., 2021]
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The forward process

dxt “ ´βtxtdt `
a

2βtdwt, 0 ď t ď T, x0 „ pdata (1)

where βt is an affine non-decreasing function. We denote pptq0ăďtďT the density of xt.

By considering zt “ eBtxt where Bt “
şt

0
βsds

dzt “ βte
Btxt ` eBtdxt

“
a

2βte
Btdwt.

and for 0 ď t ď T ,

xt “ e´Btzt “ e´Btx0 ` e´Bt

ż t

0

eBs
a

2βsdws “ e´Btx0 ` ηt. (2)

with ηt „ N p0,
`

1 ´ e´2Bt
˘

Iq. In particular, Σt :“ Cov pxtq “ e´2Bt Cov px0q `
`

1 ´ e´2Bt
˘

I.

Consequently, if t Ñ `8, x8 „ N0
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Émile Pierret, supervised by Bruno Galerne Introduction to diffusion models and study of their restriction to the Gaussian case May, 27th, CANUM 2024 9 / 41



The forward process

dxt “ ´βtxtdt `
a

2βtdwt, 0 ď t ď T, x0 „ pdata (1)

where βt is an affine non-decreasing function. We denote pptq0ăďtďT the density of xt.

By considering zt “ eBtxt where Bt “
şt

0
βsds

dzt “ βte
Btxt ` eBtdxt

“
a

2βte
Btdwt.

and for 0 ď t ď T ,

xt “ e´Btzt “ e´Btx0 ` e´Bt

ż t

0

eBs
a

2βsdws “ e´Btx0 ` ηt. (2)

with ηt „ N p0,
`

1 ´ e´2Bt
˘

Iq. In particular, Σt :“ Cov pxtq “ e´2Bt Cov px0q `
`

1 ´ e´2Bt
˘

I.

Consequently, if t Ñ `8, x8 „ N0
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Diffusion models through SDE

Image extracted from [Song et al., 2021]
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Backward SDE

Under some assumptions on the distribution pdata [Pardoux, 1986]2, the backward process pxT´tq0ďtďT verifies

the backward SDE

dyt “ βT´tpyt ` 2∇ log pT´tpytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ pT . (3)

• ∇ log pT´t is called the score function.

• The backward Brownian motion w is not defined on the same filtration than the forward w

• We are unable to derive the score function.

2Pardoux, E. (1986). Grossissement d’une filtration et retournement du temps d’une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48–55). Springer Berlin

Heidelberg
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How to sample pdata ?

1. Learn the score function sθpx, tq « ∇ log ptpxq by applying the forward process to data and minimizing

Et

␣

EtλptqEx0Epxt|x0 r}sθpxt, tq ´ ∇xt log p0tpxt | x0q}
2
s
(

. (4)

2. Discretize the backward SDE

• y0 „ N0 (and not pT )

• By Euler Maruyama’s scheme,

dyt “ βT´tpyt ` 2∇ log pT ´tpytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ pT . (5)

becomes:

ỹ∆,EM
k`1 “ ỹ∆,EM

k ` ∆tβT´tk

´

ỹ∆,EM
k ´ 2Σ´1

T´tk
ỹ∆,EM
k

¯

`

b

2∆tβT´tkzk, zk „ N0 (6)
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The flow ODE

With a SDE can be associated an ODE

Image extracted from [Song et al., 2021]3

3Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative modeling through stochastic differential equations. International Conference on

Learning Representations. https://openreview.net/forum?id=PxTIG12RRHS
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Application to diffusion models

As a reminder, the forward process is.

dxt “ ´βtxtdt `
a

2βtdwt, 0 ď t ď T, x0 „ pdata. (7)

With Fokker-Planck equation, we can introduce the associated flow ODE

dxt “ r´βtxt ´ βt∇x log ptpxtqs dt, 0 ă t ď T, x0 „ pdata (8)

such that: if y0 „ pT and verifies Equation (9) then for all t, yt „ pt.

dyt “ rβT´tyt ` βT´t∇y log pT´tpytqs dt, 0 ď t ă T. (9)
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Two techniques to sample

1. Learn the score function sθpx, tq « ∇ log ptpxq by applying the forward process.

2. Discretize the backward SDE 2. Discretize the flow ODE in reverse-time

• y0 „ N0 (and not pT )

• By Euler Maruyama’s scheme,

dyt “ βT´tpyt`2∇ log pT ´tpytqqdt`
a

2βT´tdwt

becomes

ỹ∆,EM
k`1 “ ỹ∆,EM

k ` ∆tβT´tk

´

ỹ∆,EM
k ´ 2Σ´1

T´tk
ỹ∆,EM
k

¯

`
a

2∆tβT´tkzk, zk „ N0

• y0 „ N0 (and not pT )

• By Euler’s scheme,

dyt “ rβT´tyt ` βT´t∇y log pT´tpytqs dt

becomes

py∆,Euler
k`1 “ py∆,Euler

k ` ∆tfptk, py
∆,Euler
k q

with fpt,yq “ βT´ty ´ βT´tΣ
´1
T´ty
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Émile Pierret, supervised by Bruno Galerne Introduction to diffusion models and study of their restriction to the Gaussian case May, 27th, CANUM 2024 16 / 41



To image restoration

The sampling of pdata provides a prior knowledge on data to achieve restoration tasks on images (inpainting,

super-resolution, deblurring,...) [Song et al., 2021],[Lugmayr et al., 2022],[Chung et al., 2022], Pseudo-inverse

reasonning [Choi et al., 2021]
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Study of the convergence



State-of-the art

• Experimental study: [S. Chen, Chewi, Lee, et al., 2023; Franzese et al., 2023; Karras et al., 2022]

• Theoretical study: [Benton et al., 2024; S. Chen, Chewi, Li, et al., 2023; De Bortoli et al., 2021; Lee et al.,

2022, 2024]

• Under manifold assumption: [M. Chen et al., 2023; De Bortoli, 2022; Wenliang and Moran, 2022]

• Upper bounds on the 1-Wasserstein or TV distance between the data and the model distributions by

making assumptions on the L2-error between the ideal and learned score functions and on the compacity of

the support of the data

• In practice, the convergence of diffusion models is observed using the Frechet Inception Distance (FID)

which is 2-Wasserstein distance between Gaussians fitted to datasets.
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Error types

There are four types of error:

• The initialization error

• The discretization error

• The truncation error

• The score approximation error
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The initialization error

dyt “ βT´tpyt ` 2∇ log pT´tpytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ pT . (10)

is replaced by:

dyt “ βT´tpyt ` 2∇ log pT´tpytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ N0. (11)

• The resullt is: if yt verifies Equation (14), yT „ pT´t

• Equation (15) produces another stochastic process.

• This holds also for the ODE.
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The discretization error

Several choice for the discretization:

S
D
E
sc
h
em

es

Euler-

Maruyama

(EM)

$

&

%

ỹ
∆,EM
0 „ N0

ỹ
∆,EM
k`1

“ ỹ
∆,EM
k

` ∆tβT´tk

´

ỹ
∆,EM
k

´ 2Σ´1
T´tk

ỹ
∆,EM
k

¯

`
b

2∆tβT´tk
zk, zk „ N0

(12)

Exponential

integrator

(EI)

$

&

%

ỹ
∆,EI
0 „ N0

ỹ
∆,EI
k`1

“ ỹ
∆,EI
k

` γ1,k

´

ỹ
∆,EI
k

´ 2Σ´1
T´tk

ỹ
∆,EI
k

¯

`
a

2γ2,kzk, zk „ N0

where γ1,k “ exppBT´tk
´ BT´tk`1

q ´ 1 and γ2,k “ 1
2

pexpp2BT´tk
´ 2BT´tk`1

q ´ 1q

(13)

O
D
E
sc
h
em

es

Explicit

Euler

#

py
∆,Euler
0 „ N0

py
∆,Euler
k`1

“ py
∆,Euler
k

` ∆tfptk, py
∆,Euler
k

q with fpt,yq “ βT´ty ´ βT´tΣ
´1
T´t

y
(14)

Heun’s

method

$

’

’

&

’

’

%

py
∆,Heun
0 „ N0

py
∆,Heun
k`1{2

“ py
∆,Heun
k

` ∆tfptk, py
∆,Heun
k

q with fpt,yq “ βT´ty ´ βT´tΣ
´1
T´t

y

py
∆,Heun
k`1

“ py
∆,Heun
k

`
∆t
2

´

fptk, py
∆,Heun
k

q ` fptk`1, py
∆,Heun
k`1{2

q

¯

(15)
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The truncation error

dyt “ βT´tpyt ` 2∇ log pT´tpytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ pT . (16)

• At time 0, p0 does not necessary exists.

• It is preferable to solve Equation (20) from 0 to T ´ ε.

• In general, ε “ 10´3 (Karras et al., 2022; Song et al., 2021)

Émile Pierret, supervised by Bruno Galerne Introduction to diffusion models and study of their restriction to the Gaussian case May, 27th, CANUM 2024 22 / 41



The score approximation error

dyt “ βT´tpyt ` 2∇ log pT´tpytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ pT . (17)

dyt “ βT´tpyt ` 2sθpT ´ t,ytqqdt `
a

2βT´tdwt, 0 ď t ă T, y0 „ pT . (18)

where sθ is a neural network.

1. The most difficult to estimate theoretically.

2. In general, bounds on the L2 norm.
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Restriction to the Gaussian case



Gaussian assumption

Gaussian assumption: pdata is a centered Gaussian distribution N p0,Σq. (Σ is not necessarily invertible)

• pt „ N p0,Σtq, with Σt “ e´2Bt Cov px0q `
`

1 ´ e´2Bt
˘

I

• ∇ log ptpxq “ ´Σ´1
t x

• Also known if pdata is a Gaussian mixture [Shah et al., 2023; Zach et al., 2024; Zach et al., 2023].

Note that ∇ log pt is linear.

Proposition 1: Characterization of Gaussian distributions through diffusion models

The three following propositions are equivalent:

(i) x0 „ N p0,Σq for some covariance Σ.

(ii) @t ą 0,∇x log ptpxq is linear w.r.t x.

(iii) Dt ą 0,∇x log ptpxq is linear w.r.t x.

In this case, for t ą 0, ∇x log ptpxq “ ´Σ´1
t x.
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Explicit solution of the backward SDE

Proposition 3: Solution of the backward SDE under Gaussian assumption

Under Gaussian assumption, the strong solution to Equation (3) can be written as:

yt “ e´pBT ´BT´tqΣT´tΣ
´1
T y0 ` ξt, 0 ď t ď T (19)

where ξt is a Gaussian process. Finally:

Covpytq “ ΣT´t ` e´2pBT ´BT´tqΣ2
T´tΣ

´1
T

`

Σ´1
T´t Covpy0qΣ´1

T ΣT´t ´ I
˘

, (20)

and in particular, if Covpy0q and Σ commute,

Covpytq “ ΣT´t ` e´2pBT ´BT´tqΣ2
T´tΣ

´1
T

“

Σ´1
T Covpy0q ´ I

‰

(21)

• y0 can follow any law.
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Proposition 4: Solution of the ODE probability flow under Gaussian assumption

The solution to the probability flow ODE (8) under Gaussian assumption corresponds to the optimal

transport map between pT and pdata. More precisely, for any y0,

yt “ Σ
´1{2
T Σ

1{2
T´ty0, 0 ď t ď T,

is the solution of the reverse-time ODE (9). Consequently, the covariance matrix Covpytq verifies

Covpytq “ Σ
´1{2
T Σ

1{2
T´t Covpy0qΣ

1{2
T´tΣ

´1{2
T , 0 ď t ď T, (22)

and in particular, if Covpy0q and Σ commute,

Covpytq “ Σ´1
T ΣT´t Covpy0q, 0 ď t ď T. (23)

• The relation between optimal transport and probability flow ODE (also called Fokker-Planck ODE) has

been discussed in Khrulkov et al., 2023; Lavenant and Santambrogio, 20224 in the asymptotic case where

T ÞÑ `8.

4Lavenant, H., & Santambrogio, F. (2022). The flow map of the fokker–planck equation does not provide optimal transport. Applied Mathematics Letters, 133, 108225.

https://doi.org/https://doi.org/10.1016/j.aml.2022.108225
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Initialization error

Proposition 5: Marginals of the generative processes under Gaussian assumption

Under Gaussian assumption, pỹtq0ďtďT and ppytq0ďtďT are Gaussian processes. At each time t, p̃t is the

Gaussian distribution N p0, Σ̃tq with Σ̃t “ Σt ` e´2pBT ´BtqΣ2
tΣ

´1
T pΣ´1

T ´ Iq and ppt is the Gaussian

distribution N p0, pΣtq with pΣt “ Σ´1
T Σt. For all 0 ď t ď T , the three covariance matrices Σt, Σ̃t and

pΣt share the same range. Furthermore, for all 0 ď t ď T ,

W2pp̃t, ptq ď W2pppt, ptq (24)

which shows for t “ 0 that the SDE sampler is a better sampler than the ODE sampler when the exact

score is konwn.
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Initialization error

0 0.2 0.4 0.6 0.8 T = 1

Time t

10−4

10−3

10−2

10−1

W
2
(·,
p
t
)

SDE ODE
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Discretization error

From

ỹ∆,EM
k`1 “ ỹ∆,EM

k ` ∆tβT´tk

´

ỹ∆,EM
k ´ 2Σ´1

T´tk
ỹ∆,EM
k

¯

`
a

2∆tβT´tkzk, zk „ N0

we have:

λEM,k`1
i “

`

1 ` ∆tβT´tk p1 ´ 2

λ
T´tk
i

q
˘2
λEM,k
i ` 2∆tβT´tk , 1 ď i ď d, 0 ď k ď N ´ 2 (25)
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Discretization error
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Truncation error
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(a) Initialization error along the integration time
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(b) Truncation error for different truncation time ε
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Ablation study

Continuous N “ 50 N “ 250 N “ 500 N “ 1000

pT N0 pT N0 pT N0 pT N0 pT N0

E
M

ε “ 0 0 6.7E-4 4.77 4.77 0.65 0.65 0.31 0.31 0.15 0.16

ε “ 10´5 2.5E-3 2.6E-3 4.77 4.77 0.65 0.65 0.31 0.31 0.16 0.16

ε “ 10´3 0.17 0.17 4.67 4.67 0.69 0.69 0.39 0.39 0.27 0.27

ε “ 10´2 1.35 1.35 4.56 4.56 1.69 1.69 1.50 1.50 1.42 1.42

E
I

ε “ 0 0 6.7E-4 2.81 2.81 0.57 0.57 0.30 0.30 0.16 0.16

ε “ 10´5 2.5E-3 2.6E-3 2.81 2.81 0.57 0.57 0.30 0.30 0.16 0.16

ε “ 10´3 0.17 0.17 2.91 2.91 0.66 0.66 0.41 0.41 0.28 0.28

ε “ 10´2 1.35 1.35 3.93 3.93 1.76 1.76 1.55 1.55 1.45 1.45

E
u
le
r

ε “ 0 0 0.07 1.72 1.78 0.38 0.44 0.19 0.26 0.10 0.17

ε “ 10´5 2.5E-3 0.07 1.72 1.78 0.38 0.44 0.20 0.26 0.10 0.17

ε “ 10´3 0.17 0.19 1.72 1.78 0.42 0.48 0.27 0.32 0.21 0.25

ε “ 10´2 1.35 1.36 2.21 2.25 1.41 1.43 1.37 1.38 1.36 1.37

H
eu

n

ε “ 0 0 0.07 7.09 7.09 0.72 0.73 0.21 0.22 0.05 0.09

ε “ 10´5 2.5E-3 0.07 6.48 6.48 0.64 0.65 0.18 0.20 0.05 0.09

ε “ 10´3 0.17 0.19 0.56 0.57 0.13 0.15 0.16 0.18 0.17 0.19

ε “ 10´2 1.35 1.36 1.37 1.38 1.35 1.36 1.35 1.36 1.35 1.36
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Data dependent errors
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(a) Initialization error at final time
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(b) Truncation error at final time for ε “ 10´3
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Score approximation

Gaussian sample pEMθ pHeun
θ pHeun

θ
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Score approximation

Exact score distribution Learned score distribution

p W2(p,pdata) Ó Wemp.
2 (pemp.,pdata) Ó FID(pemp.,p

emp.
data

) Ó Wemp.
2 (p

emp.
θ

,p
emp.
data

) Ó FID(p
emp.
θ

,p
emp.
data

) Ó

EM 5.16 5.1630˘7E-5 0.0891˘8E-4 15.6 01.02

Heun 3.73 3.7323˘2E-4 0.0447˘6E-4 56.7 19.48

• Heun’s method fails.

• EM discretization more resilient to score approximation.
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Conclusion

• This theoretical analysis led to conclude that Heun’s scheme is the best numerical solution, in accordance

with empirical previous work [Karras et al., 2022].

• We conducted an empirical analysis with a learned score function using standard architecture which showed

the most important one in practice.

• This suggests that assessing the quality of learned score functions is an important research direction for

future work.
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The end

Thank you for your attention !

Preprint : Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors, E. Pierret, B.

Galerne, 2024, hal, Arxiv
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Émile Pierret, supervised by Bruno Galerne Introduction to diffusion models and study of their restriction to the Gaussian case May, 27th, CANUM 2024 40 / 41

https://openreview.net/forum?id=6PIrhAx1j4i
https://doi.org/https://doi.org/10.1016/j.aml.2022.108225
https://api.semanticscholar.org/CorpusID:246240274


Shah, K., Chen, S., & Klivans, A. (2023). Learning mixtures of gaussians using the DDPM objective.

Thirty-seventh Conference on Neural Information Processing Systems.

https://openreview.net/forum?id=aig7sgdRfI

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative

modeling through stochastic differential equations. International Conference on Learning

Representations. https://openreview.net/forum?id=PxTIG12RRHS

Wenliang, L. K., & Moran, B. (2022). Score-based generative model learn manifold-like structures with

constrained mixing. NeurIPS 2022 Workshop on Score-Based Methods.

https://openreview.net/forum?id=eSZqaIrDLZR

Xiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion

GANs. International Conference on Learning Representations.

Zach, M., Kobler, E., Chambolle, A., & Pock, T. (2024). Product of gaussian mixture diffusion models. Journal

of Mathematical Imaging and Vision. https://doi.org/10.1007/s10851-024-01180-3

Zach, M., Pock, T., Kobler, E., & Chambolle, A. (2023). Explicit diffusion of gaussian mixture model based

image priors. In L. Calatroni, M. Donatelli, S. Morigi, M. Prato, & M. Santacesaria (Eds.), Scale space

and variational methods in computer vision (pp. 3–15). Springer International Publishing.
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