

Émile Pierret, supervised by Bruno Galerne

May, 27th, CANUM 2024

Institut Denis Poisson - Université d'Orléans, Université de Tours, CNRS

Introduction to generative models

What is a generative model?

Variational Auto-Encoder (VAE)

Image extracted from this url

Generative Aversarial Netowrk (GAN)

Image extracted from this url

Image extrated from [Xiao et al., 2022]¹

• Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. *Advances in Neural Information Processing Systems*

¹Xiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion GANs. International Conference on Learning Representations

Main idea

7 / 41

7 / 41

Diffusion models through SDE

Diffusion models through SDE

Image extracted from [Song et al., 2021]

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of \boldsymbol{x}_t .

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of x_t .

By considering $oldsymbol{z}_t = e^{B_t} oldsymbol{x}_t$ where $B_t = \int_0^t eta_s ds$

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of ${\pmb x}_t$.

By considering $\boldsymbol{z}_t = e^{B_t} \boldsymbol{x}_t$ where $B_t = \int_0^t \beta_s ds$

$$dz_t = \beta_t e^{B_t} x_t + e^{B_t} dx_t$$
$$= \sqrt{2\beta_t} e^{B_t} dw_t.$$

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of x_t .

By considering $z_t = e^{B_t} x_t$ where $B_t = \int_0^t \beta_s ds$

$$dz_t = \beta_t e^{B_t} x_t + e^{B_t} dx_t$$
$$= \sqrt{2\beta_t} e^{B_t} dw_t.$$

and for $0 \le t \le T$,

$$x_t = e^{-B_t} z_t = e^{-B_t} x_0 + e^{-B_t} \int_0^t e^{B_s} \sqrt{2\beta_s} dw_s = e^{-B_t} x_0 + \eta_t.$$
 (2)

with $\eta_t \sim \mathcal{N}(\mathbf{0}, (1 - e^{-2B_t}) \mathbf{I})$. In particular, $\Sigma_t := \operatorname{Cov}(\boldsymbol{x}_t) = e^{-2B_t} \operatorname{Cov}(\boldsymbol{x}_0) + (1 - e^{-2B_t}) \mathbf{I}$.

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of x_t .

By considering $\boldsymbol{z}_t = e^{B_t} \boldsymbol{x}_t$ where $B_t = \int_0^t \beta_s ds$

$$dz_t = \beta_t e^{B_t} x_t + e^{B_t} dx_t$$
$$= \sqrt{2\beta_t} e^{B_t} dw_t.$$

and for $0 \le t \le T$,

$$x_t = e^{-B_t} z_t = e^{-B_t} x_0 + e^{-B_t} \int_0^t e^{B_s} \sqrt{2\beta_s} dw_s = e^{-B_t} x_0 + \eta_t.$$
 (2)

with $\eta_t \sim \mathcal{N}(\mathbf{0}, (1 - e^{-2B_t}) \mathbf{I})$. In particular, $\Sigma_t := \operatorname{Cov}(\mathbf{x}_t) = e^{-2B_t} \operatorname{Cov}(\mathbf{x}_0) + (1 - e^{-2B_t}) \mathbf{I}$.

Consequently, if $t \to +\infty$, $x_{\infty} \sim \mathcal{N}_0$

Diffusion models through SDE

Image extracted from [Song et al., 2021]

Backward SDE

Under some assumptions on the distribution p_{data} [Pardoux, 1986]², the backward process $(x_{T-t})_{0 \leqslant t \leqslant T}$ verifies the backward SDE

$$d\mathbf{y}_t = \beta_{T-t}(\mathbf{y}_t + 2\nabla \log p_{T-t}(\mathbf{y}_t))dt + \sqrt{2\beta_{T-t}}d\overline{\mathbf{w}}_t, \quad 0 \leqslant t < T, \quad \mathbf{y}_0 \sim p_T.$$
(3)

² Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48–55). Springer Berlin Heidelberg

Backward SDE

Under some assumptions on the distribution p_{data} [Pardoux, 1986]², the backward process $(x_{T-t})_{0 \leqslant t \leqslant T}$ verifies the backward SDE

$$d\boldsymbol{y}_{t} = \beta_{T-t}(\boldsymbol{y}_{t} + 2\nabla \log p_{T-t}(\boldsymbol{y}_{t}))dt + \sqrt{2\beta_{T-t}}d\overline{\boldsymbol{w}}_{t}, \quad 0 \leqslant t < T, \quad \boldsymbol{y}_{0} \sim p_{T}.$$
 (3)

- $\nabla \log p_{T-t}$ is called the score function.
- ullet The backward Brownian motion \overline{w} is not defined on the same filtration than the forward w
- We are unable to derive the score function.

²Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), Séminaire de probabilités xx 1984/85 (pp. 48–55). Springer Berlin Heidelberg

How to sample $p_{\rm data}$?

1. Learn the score function $s_{\theta}(x,t) \approx \nabla \log p_t(x)$ by applying the forward process to data and minimizing

$$\mathbb{E}_{t} \left\{ \mathbb{E}_{t} \lambda(t) \mathbb{E}_{\boldsymbol{x}_{0}} \mathbb{E}_{(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0})} [\|\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t}, t) - \nabla_{\boldsymbol{x}_{t}} \log p_{0t}(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0})\|^{2}] \right\}. \tag{4}$$

- 2. Discretize the backward SDE
 - $\mathbf{y}_0 \sim \mathcal{N}_0$ (and not p_T)
 - By Euler Maruyama's scheme,

$$d\mathbf{y}_{t} = \beta_{T-t}(\mathbf{y}_{t} + 2\nabla \log \mathbf{p}_{T-t}(\mathbf{y}_{t}))dt + \sqrt{2\beta_{T-t}}d\overline{\mathbf{w}}_{t}, \quad 0 \leqslant t < T, \quad \mathbf{y}_{0} \sim p_{T}.$$
 (5)

becomes:

$$\tilde{\boldsymbol{y}}_{k+1}^{\Delta,\mathsf{EM}} = \tilde{\boldsymbol{y}}_{k}^{\Delta,\mathsf{EM}} + \Delta_{t}\beta_{T-t_{k}} \left(\tilde{\boldsymbol{y}}_{k}^{\Delta,\mathsf{EM}} - 2\boldsymbol{\Sigma}_{T-t_{k}}^{-1} \tilde{\boldsymbol{y}}_{k}^{\Delta,\mathsf{EM}} \right) + \sqrt{2\Delta_{t}\beta_{T-t_{k}}} \boldsymbol{z}_{k}, \ \boldsymbol{z}_{k} \sim \mathcal{N}_{0} \tag{6}$$

The flow ODE

With a SDE can be associated an ODE

Image extracted from [Song et al., 2021]³

³Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*. https://openreview.net/forum?id=PxTIG12RRHS

Application to diffusion models

As a reminder, the forward process is.

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}.$$
 (7)

With Fokker-Planck equation, we can introduce the associated flow ODE

$$d\mathbf{x}_t = \left[-\beta_t \mathbf{x}_t - \beta_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \right] dt, \quad 0 < t \le T, \quad \mathbf{x}_0 \sim p_{\text{data}}$$
(8)

such that: if $y_0 \sim p_T$ and verifies Equation (9) then for all t, $y_t \sim p_t$.

$$d\mathbf{y}_t = [\beta_{T-t}\mathbf{y}_t + \beta_{T-t}\nabla_{\mathbf{y}}\log p_{T-t}(\mathbf{y}_t)]dt, \quad 0 \leqslant t < T.$$
(9)

Two techniques to sample

- 1. Learn the score function $s_{\theta}(x,t) \approx \nabla \log p_t(x)$ by applying the forward process.
- 2. Discretize the backward SDE
 - $y_0 \sim \mathcal{N}_0$ (and not p_T)
 - By Euler Maruyama's scheme,

$$d\boldsymbol{y}_{t} = \beta_{T-t}(\boldsymbol{y}_{t} + 2\nabla \log \boldsymbol{p}_{T-t}(\boldsymbol{y}_{t}))dt + \sqrt{2\beta_{T-t}}d\overline{\boldsymbol{w}}_{t}$$

becomes

$$egin{aligned} ilde{oldsymbol{y}}_{k+1}^{\Delta,\mathsf{EM}} &= ilde{oldsymbol{y}}_k^{\Delta,\mathsf{EM}} + \Delta_t eta_{T-t_k} \left(ilde{oldsymbol{y}}_k^{\Delta,\mathsf{EM}} - 2 oldsymbol{\Sigma}_{T-t_k}^{-1} ilde{oldsymbol{y}}_k^{\Delta,\mathsf{EM}}
ight) \ &+ \sqrt{2\Delta_t eta_{T-t_k}} oldsymbol{z}_k, \ oldsymbol{z}_k \sim \mathcal{N}_0 \end{aligned}$$

- 2. Discretize the flow ODE in reverse-time
 - $\boldsymbol{y}_0 \sim \mathcal{N}_0$ (and not p_T)
 - By Euler's scheme,

$$d\boldsymbol{y}_{t} = \left[\beta_{T-t}\boldsymbol{y}_{t} + \beta_{T-t}\nabla_{\boldsymbol{y}}\log p_{T-t}(\boldsymbol{y}_{t})\right]dt$$

becomes

$$\begin{split} \widehat{\boldsymbol{y}}_{k+1}^{\Delta, \text{Euler}} &= \widehat{\boldsymbol{y}}_k^{\Delta, \text{Euler}} + \Delta_t f(t_k, \widehat{\boldsymbol{y}}_k^{\Delta, \text{Euler}}) \\ \text{with } f(t, \boldsymbol{y}) &= \beta_{T-t} \boldsymbol{y} - \beta_{T-t} \boldsymbol{\Sigma}_{T-t}^{-1} \boldsymbol{y} \end{split}$$

To image restoration

The sampling of $p_{\rm data}$ provides a prior knowledge on data to achieve restoration tasks on images (inpainting, super-resolution, deblurring,...) [Song et al., 2021],[Lugmayr et al., 2022],[Chung et al., 2022], Pseudo-inverse reasonning [Choi et al., 2021]

Study of the convergence

State-of-the art

- Experimental study: [S. Chen, Chewi, Lee, et al., 2023; Franzese et al., 2023; Karras et al., 2022]
- Theoretical study: [Benton et al., 2024; S. Chen, Chewi, Li, et al., 2023; De Bortoli et al., 2021; Lee et al., 2022, 2024]
- Under manifold assumption: [M. Chen et al., 2023; De Bortoli, 2022; Wenliang and Moran, 2022]
- ullet Upper bounds on the 1-Wasserstein or TV distance between the data and the model distributions by making assumptions on the L^2 -error between the ideal and learned score functions and on the compacity of the support of the data
- In practice, the convergence of diffusion models is observed using the Frechet Inception Distance (FID) which is 2-Wasserstein distance between Gaussians fitted to datasets.

Error types

There are four types of error:

- The initialization error
- The discretization error
- The truncation error
- The score approximation error

The initialization error

$$d\mathbf{y}_t = \beta_{T-t}(\mathbf{y}_t + 2\nabla \log p_{T-t}(\mathbf{y}_t))dt + \sqrt{2\beta_{T-t}}d\mathbf{w}_t, \quad 0 \leqslant t < T, \quad \mathbf{y}_0 \sim p_T.$$
(10)

is replaced by:

$$d\boldsymbol{y}_{t} = \beta_{T-t}(\boldsymbol{y}_{t} + 2\nabla \log p_{T-t}(\boldsymbol{y}_{t}))dt + \sqrt{2\beta_{T-t}}d\boldsymbol{w}_{t}, \quad 0 \leqslant t < T, \quad \boldsymbol{y}_{0} \sim \mathcal{N}_{0}.$$
(11)

- The resullt is: if \boldsymbol{y}_t verifies Equation (14), $\boldsymbol{y}_T \sim p_{T-t}$
- Equation (15) produces another stochastic process.
- This holds also for the ODE.

The discretization error

Several choice for the discretization:

SDE schemes	Euler- Maruyama (EM)	$ \left\{ \begin{array}{ll} \tilde{\boldsymbol{y}}_{0}^{\Delta, \mathrm{EM}} & \sim \mathcal{N}_{0} \\ \tilde{\boldsymbol{y}}_{k+1}^{\Delta, \mathrm{EM}} & = \tilde{\boldsymbol{y}}_{k}^{\Delta, \mathrm{EM}} + \Delta_{t} \beta_{T-t_{k}} \left(\tilde{\boldsymbol{y}}_{k}^{\Delta, \mathrm{EM}} - 2 \boldsymbol{\Sigma}_{T-t_{k}}^{-1} \tilde{\boldsymbol{y}}_{k}^{\Delta, \mathrm{EM}} \right) + \sqrt{2 \Delta_{t} \beta_{T-t_{k}}} \boldsymbol{z}_{k}, \ \boldsymbol{z}_{k} \sim \mathcal{N}_{0} \end{array} \right. $	(12)
	Exponential integrator (EI)	$\begin{cases} &\tilde{\boldsymbol{y}}_{0}^{\Delta,\mathrm{El}} &\sim \mathcal{N}_{0} \\ &\tilde{\boldsymbol{y}}_{k+1}^{\Delta,\mathrm{El}} &= \tilde{\boldsymbol{y}}_{k}^{\Delta,\mathrm{El}} + \gamma_{1,k} \left(\tilde{\boldsymbol{y}}_{k}^{\Delta,\mathrm{El}} - 2\boldsymbol{\Sigma}_{T-t_{k}}^{-1} \tilde{\boldsymbol{y}}_{k}^{\Delta,\mathrm{El}} \right) + \sqrt{2\gamma_{2,k}} z_{k}, \ \boldsymbol{z}_{k} \sim \mathcal{N}_{0} \\ &\text{where } \gamma_{1,k} = \exp(B_{T-t_{k}} - B_{T-t_{k+1}}) - 1 \text{ and } \gamma_{2,k} = \frac{1}{2} (\exp(2B_{T-t_{k}} - 2B_{T-t_{k+1}}) - 1) \end{cases}$	(13)
schemes	Explicit Euler	$ \left\{ \begin{array}{ll} \hat{\boldsymbol{y}}_{0}^{\Delta, \text{Euler}} & \sim \mathcal{N}_{0} \\ \hat{\boldsymbol{y}}_{k+1}^{\Delta, \text{Euler}} & = \hat{\boldsymbol{y}}_{k}^{\Delta, \text{Euler}} + \Delta_{t} f(t_{k}, \hat{\boldsymbol{y}}_{k}^{\Delta, \text{Euler}}) & \text{with } f(t, \boldsymbol{y}) = \beta_{T-t} \boldsymbol{y} - \beta_{T-t} \boldsymbol{\Sigma}_{T-t}^{-1} \boldsymbol{y} \end{array} \right. $	(14)
ODE sch	Heun's method	$ \begin{cases} \hat{\boldsymbol{y}}_{0}^{\Delta, \text{Heun}} & \sim \mathcal{N}_{0} \\ \hat{\boldsymbol{y}}_{k+1/2}^{\Delta, \text{Heun}} & = \hat{\boldsymbol{y}}_{k}^{\Delta, \text{Heun}} + \Delta_{t} f(t_{k}, \hat{\boldsymbol{y}}_{k}^{\Delta, \text{Heun}}) \text{ with } f(t, \boldsymbol{y}) = \beta_{T-t} \boldsymbol{y} - \beta_{T-t} \boldsymbol{\Sigma}_{T-t}^{-1} \boldsymbol{y} \\ \hat{\boldsymbol{y}}_{k+1}^{\Delta, \text{Heun}} & = \hat{\boldsymbol{y}}_{k}^{\Delta, \text{Heun}} + \frac{\Delta_{t}}{2} \left(f(t_{k}, \hat{\boldsymbol{y}}_{k}^{\Delta, \text{Heun}}) + f(t_{k+1}, \hat{\boldsymbol{y}}_{k+1/2}^{\Delta, \text{Heun}}) \right) \end{cases} $	(15)

The truncation error

$$d\mathbf{y}_t = \beta_{T-t}(\mathbf{y}_t + 2\nabla \log p_{T-t}(\mathbf{y}_t))dt + \sqrt{2\beta_{T-t}}d\mathbf{w}_t, \quad 0 \leqslant t < T, \quad \mathbf{y}_0 \sim p_T.$$
(16)

- At time 0, p_0 does not necessary exists.
- It is preferable to solve Equation (20) from 0 to $T \varepsilon$.
- In general, $\varepsilon = 10^{-3}$ (Karras et al., 2022; Song et al., 2021)

The score approximation error

$$d\boldsymbol{y}_{t} = \beta_{T-t}(\boldsymbol{y}_{t} + 2\nabla \log p_{T-t}(\boldsymbol{y}_{t}))dt + \sqrt{2\beta_{T-t}}d\boldsymbol{w}_{t}, \quad 0 \leqslant t < T, \quad \boldsymbol{y}_{0} \sim p_{T}.$$
 (17)

$$d\mathbf{y}_t = \beta_{T-t}(\mathbf{y}_t + 2\mathbf{s}_{\theta}(T - t, \mathbf{y}_t))dt + \sqrt{2\beta_{T-t}}d\mathbf{w}_t, \quad 0 \leqslant t < T, \quad \mathbf{y}_0 \sim p_T.$$
(18)

where s_{θ} is a neural network.

- 1. The most difficult to estimate theoretically.
- 2. In general, bounds on the ${\cal L}^2$ norm.

Gaussian assumption

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

- $p_t \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_t)$, with $\mathbf{\Sigma}_t = e^{-2B_t} \operatorname{Cov}(\mathbf{x}_0) + (1 e^{-2B_t}) \mathbf{I}$
- $\nabla \log p_t(\boldsymbol{x}) = -\boldsymbol{\Sigma}_t^{-1} \boldsymbol{x}$
- Also known if p_{data} is a Gaussian mixture [Shah et al., 2023; Zach et al., 2024; Zach et al., 2023].

Note that $\nabla \log p_t$ is linear.

Gaussian assumption

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

- $p_t \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_t)$, with $\mathbf{\Sigma}_t = e^{-2B_t} \operatorname{Cov}(\mathbf{x}_0) + (1 e^{-2B_t}) \mathbf{I}$
- $\nabla \log p_t(\boldsymbol{x}) = -\boldsymbol{\Sigma}_t^{-1} \boldsymbol{x}$
- Also known if p_{data} is a Gaussian mixture [Shah et al., 2023; Zach et al., 2024; Zach et al., 2023].

Note that $\nabla \log p_t$ is linear.

Proposition 2: Characterization of Gaussian distributions through diffusion models

The three following propositions are equivalent:

- (i) $x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ for some covariance $\mathbf{\Sigma}$.
- (ii) $\forall t > 0, \nabla_x \log p_t(\boldsymbol{x})$ is linear w.r.t \boldsymbol{x} .
- (iii) $\exists t > 0, \nabla_x \log p_t(x)$ is linear w.r.t x.

In this case, for t > 0, $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}) = -\boldsymbol{\Sigma}_t^{-1} \boldsymbol{x}$.

Explicit solution of the backward SDE

Proposition 3: Solution of the backward SDE under Gaussian assumption

Under Gaussian assumption, the strong solution to Equation (3) can be written as:

$$\boldsymbol{y}_{t} = e^{-(B_{T} - B_{T-t})} \boldsymbol{\Sigma}_{T-t} \boldsymbol{\Sigma}_{T}^{-1} \boldsymbol{y}_{0} + \boldsymbol{\xi}_{t}, \quad 0 \leqslant t \leqslant T$$

$$\tag{19}$$

where ξ_t is a Gaussian process. Finally:

$$Cov(\boldsymbol{y}_t) = \boldsymbol{\Sigma}_{T-t} + e^{-2(B_T - B_{T-t})} \boldsymbol{\Sigma}_{T-t}^2 \boldsymbol{\Sigma}_T^{-1} \left(\boldsymbol{\Sigma}_{T-t}^{-1} Cov(\boldsymbol{y}_0) \boldsymbol{\Sigma}_T^{-1} \boldsymbol{\Sigma}_{T-t} - \boldsymbol{I} \right), \tag{20}$$

and in particular, if $\mathrm{Cov}(\boldsymbol{y}_0)$ and $\boldsymbol{\Sigma}$ commute,

$$Cov(\boldsymbol{y}_t) = \boldsymbol{\Sigma}_{T-t} + e^{-2(B_T - B_{T-t})} \boldsymbol{\Sigma}_{T-t}^2 \boldsymbol{\Sigma}_T^{-1} \left[\boldsymbol{\Sigma}_T^{-1} Cov(\boldsymbol{y}_0) - \boldsymbol{I} \right]$$
(21)

• y_0 can follow any law.

Proposition 4: Solution of the ODE probability flow under Gaussian assumption

The solution to the probability flow ODE (8) under Gaussian assumption corresponds to the optimal transport map between p_T and $p_{\rm data}$. More precisely, for any y_0 ,

$$\boldsymbol{y}_t = \boldsymbol{\Sigma}_T^{-1/2} \boldsymbol{\Sigma}_{T-t}^{1/2} \boldsymbol{y}_0, \quad 0 \leqslant t \leqslant T,$$

is the solution of the reverse-time ODE (9). Consequently, the covariance matrix $\mathrm{Cov}(y_t)$ verifies

$$\operatorname{Cov}(\boldsymbol{y}_t) = \boldsymbol{\Sigma}_T^{-1/2} \boldsymbol{\Sigma}_{T-t}^{1/2} \operatorname{Cov}(\boldsymbol{y}_0) \boldsymbol{\Sigma}_{T-t}^{1/2} \boldsymbol{\Sigma}_T^{-1/2}, \quad 0 \leqslant t \leqslant T,$$
(22)

and in particular, if $Cov(\boldsymbol{y}_0)$ and $\boldsymbol{\Sigma}$ commute,

$$Cov(\boldsymbol{y}_t) = \boldsymbol{\Sigma}_T^{-1} \boldsymbol{\Sigma}_{T-t} Cov(\boldsymbol{y}_0), \quad 0 \leqslant t \leqslant T.$$
(23)

 The relation between optimal transport and probability flow ODE (also called Fokker-Planck ODE) has been discussed in Khrulkov et al., 2023; Lavenant and Santambrogio, 2022⁴ in the asymptotic case where T → +∞.

⁴Lavenant, H., & Santambrogio, F. (2022). The flow map of the fokker–planck equation does not provide optimal transport. Applied Mathematics Letters, 133, 108225 https://doi.org/https://doi.org/10.1016/j.aml.2022.108225

Initialization error

Proposition 5: Marginals of the generative processes under Gaussian assumption

Under Gaussian assumption, $(\tilde{\boldsymbol{y}}_t)_{0\leqslant t\leqslant T}$ and $(\hat{\boldsymbol{y}}_t)_{0\leqslant t\leqslant T}$ are Gaussian processes. At each time t, \tilde{p}_t is the Gaussian distribution $\mathcal{N}(\mathbf{0}, \tilde{\boldsymbol{\Sigma}}_t)$ with $\tilde{\boldsymbol{\Sigma}}_t = \boldsymbol{\Sigma}_t + e^{-2(B_T - B_t)} \boldsymbol{\Sigma}_t^2 \boldsymbol{\Sigma}_T^{-1} (\boldsymbol{\Sigma}_T^{-1} - \boldsymbol{I})$ and \hat{p}_t is the Gaussian distribution $\mathcal{N}(\mathbf{0}, \hat{\boldsymbol{\Sigma}}_t)$ with $\hat{\boldsymbol{\Sigma}}_t = \boldsymbol{\Sigma}_T^{-1} \boldsymbol{\Sigma}_t$. For all $0 \leqslant t \leqslant T$, the three covariance matrices $\boldsymbol{\Sigma}_t$, $\tilde{\boldsymbol{\Sigma}}_t$ and $\hat{\boldsymbol{\Sigma}}_t$ share the same range. Furthermore, for all $0 \leqslant t \leqslant T$,

$$\mathbf{W}_2(\tilde{p}_t, p_t) \leqslant \mathbf{W}_2(\hat{p}_t, p_t) \tag{24}$$

which shows for t=0 that the SDE sampler is a better sampler than the ODE sampler when the exact score is konwn.

Initialization error

Discretization error

From

$$\tilde{\boldsymbol{y}}_{k+1}^{\Delta,\mathsf{EM}} = \tilde{\boldsymbol{y}}_k^{\Delta,\mathsf{EM}} + \Delta_t \beta_{T-t_k} \left(\tilde{\boldsymbol{y}}_k^{\Delta,\mathsf{EM}} - 2\boldsymbol{\Sigma}_{T-t_k}^{-1} \tilde{\boldsymbol{y}}_k^{\Delta,\mathsf{EM}} \right) + \sqrt{2\Delta_t \beta_{T-t_k}} \boldsymbol{z}_k, \ \boldsymbol{z}_k \sim \mathcal{N}_0$$

we have:

$$\lambda_i^{\mathsf{EM},k+1} = \left(1 + \Delta_t \beta_{T-t_k} \left(1 - \frac{2}{\lambda_i^{T-t_k}}\right)\right)^2 \lambda_i^{\mathsf{EM},k} + 2\Delta_t \beta_{T-t_k}, 1 \le i \le d, 0 \le k \le N-2$$
 (25)

Discretization error

Truncation error

(a) Initialization error along the integration time

(b) Truncation error for different truncation time ε

 10^{-3}

 10^{-2}

Ablation study

	Continuous		N = 50		N = 250		N = 500		N = 1000	
	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0
$\varepsilon = 0$	0	6.7E-4	4.77	4.77	0.65	0.65	0.31	0.31	0.15	0.16
$\sum_{\square} \varepsilon = 10^{-5}$	2.5E-3	2.6E-3	4.77	4.77	0.65	0.65	0.31	0.31	0.16	0.16
- 2 - 10	0.17	0.17	4.67	4.67	0.69	0.69	0.39	0.39	0.27	0.27
$\varepsilon = 10^{-2}$	1.35	1.35	4.56	4.56	1.69	1.69	1.50	1.50	1.42	1.42
$\varepsilon = 0$	0	6.7E-4	2.81	2.81	0.57	0.57	0.30	0.30	0.16	0.16
$_{-}$ $\varepsilon = 10^{-5}$	2.5E-3	2.6E-3	2.81	2.81	0.57	0.57	0.30	0.30	0.16	0.16
$ \exists \varepsilon = 10 \\ \varepsilon = 10^{-3} $	0.17	0.17	2.91	2.91	0.66	0.66	0.41	0.41	0.28	0.28
$\varepsilon = 10^{-2}$	1.35	1.35	3.93	3.93	1.76	1.76	1.55	1.55	1.45	1.45
$\varepsilon = 0$	0	0.07	1.72	1.78	0.38	0.44	0.19	0.26	0.10	0.17
$\varepsilon = 10^{-5}$	2.5E-3	0.07	1.72	1.78	0.38	0.44	0.20	0.26	0.10	0.17
$\begin{vmatrix} \varepsilon = 10^{-5} \\ \varepsilon = 10^{-3} \end{vmatrix}$	0.17	0.19	1.72	1.78	0.42	0.48	0.27	0.32	0.21	0.25
$\varepsilon = 10^{-2}$	1.35	1.36	2.21	2.25	1.41	1.43	1.37	1.38	1.36	1.37
$\varepsilon = 0$	0	0.07	7.09	7.09	0.72	0.73	0.21	0.22	0.05	0.09
$\varepsilon = 10^{-5}$	2.5E-3	0.07	6.48	6.48	0.64	0.65	0.18	0.20	0.05	0.09
$ \begin{array}{c c} $	0.17	0.19	0.56	0.57	0.13	0.15	0.16	0.18	0.17	0.19
$\varepsilon = 10^{-2}$	1.35	1.36	1.37	1.38	1.35	1.36	1.35	1.36	1.35	1.36

Data dependent errors

 10^{-1} 10^{-3} 10^{-5} 10^{-7} 10^{-9} ODE 10^{-13} 10^{-2} 10^{-6} 10^{2} Eigenvalue λ

(a) Initialization error at final time

(b) Truncation error at final time for $\varepsilon = 10^{-3}$

Score approximation

Score approximation

		Exact score distribution	Learned score distribution		
p	$W_2(p,p_{\mathrm{data}})\downarrow$	$W_2^{emp.}(p^{emp.},p_{\mathrm{data}})\downarrow$	$FID(p^{emp.}, p^{emp.}_{\mathrm{data}}) \downarrow$	$\mathbf{W}_{2}^{\mathrm{emp.}}(p_{\theta}^{\mathrm{emp.}},p_{\mathrm{data}}^{\mathrm{emp.}})\downarrow$	$FID(p_{ heta}^{emp.}, p_{\mathrm{data}}^{emp.}) \downarrow$
EM	5.16	5.1630±7E-5	0.0891±8E-4	15.6	1.02
Heun	3.73	3.7323±2E-4	0.0447±6E-4	56.7	19.4

- Heun's method fails.
- EM discretization more resilient to score approximation.

Conclusion

- This theoretical analysis led to conclude that Heun's scheme is the best numerical solution, in accordance with empirical previous work [Karras et al., 2022].
- We conducted an empirical analysis with a learned score function using standard architecture which showed the most important one in practice.
- This suggests that assessing the quality of learned score functions is an important research direction for future work.

The end

Thank you for your attention !

Preprint : Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors, E. Pierret, B. Galerne, 2024, hal, Arxiv

References

- Benton, J., Bortoli, V. D., Doucet, A., & Deligiannidis, G. (2024). Nearly \$d\$-linear convergence bounds for diffusion models via stochastic localization. *The Twelfth International Conference on Learning Representations*. https://openreview.net/forum?id=r5njV3BsuD
- Chen, M., Huang, K., Zhao, T., & Wang, M. (2023). Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), *Proceedings of the 40th international conference on machine learning* (pp. 4672–4712). PMLR. https://proceedings.mlr.press/v202/chen23o.html
- Chen, S., Chewi, S., Lee, H., Li, Y., Lu, J., & Salim, A. (2023). The probability flow ODE is provably fast. *Thirty-seventh Conference on Neural Information Processing Systems*. https://openreview.net/forum?id=KD6MFeWSAd
- Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., & Zhang, A. (2023). Sampling is as easy as learning the score:

 Theory for diffusion models with minimal data assumptions. The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=zyLVMgsZOU_

- Choi, J., Kim, S., Jeong, Y., Gwon, Y., & Yoon, S. (2021). ILVR: Conditioning method for denoising diffusion probabilistic models. *ILVR*, 14367–14376. Retrieved 2022-11-28, from https://openaccess.thecvf.com/content/ICCV2021/html/
 Choi_ILVR_Conditioning_Method_for_Denoising_Diffusion_Probabilistic_Models_ICCV_2021_paper.html
- Chung, H., Sim, B., Ryu, D., & Ye, J. C. (2022). Improving diffusion models for inverse problems using manifold constraints. *Advances in Neural Information Processing Systems (NeurIPS)*.
- De Bortoli, V. (2022). Convergence of denoising diffusion models under the manifold hypothesis. *Transactions on Machine Learning Research*. https://openreview.net/forum?id=MhK5aXo3gB
- De Bortoli, V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion schrödinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing Systems, 34, 17695–17709. Retrieved 2022-11-08, from https://papers.nips.cc/paper/2021/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html
- Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. *Advances in Neural Information Processing Systems*.
- Franzese, G., Rossi, S., Yang, L., Finamore, A., Rossi, D., Filippone, M., & Michiardi, P. (2023). How much is enough? a study on diffusion times in score-based generative models. *Entropy*, *25*(4). https://doi.org/10.3390/e25040633

- Karras, T., Aittala, M., Aila, T., & Laine, S. (2022). Elucidating the design space of diffusion-based generative models. *Proc. NeurIPS*.
- Khrulkov, V., Ryzhakov, G., Chertkov, A., & Oseledets, I. (2023). Understanding DDPM latent codes through optimal transport. *The Eleventh International Conference on Learning Representations*. https://openreview.net/forum?id=6PIrhAx1j4i
- Lavenant, H., & Santambrogio, F. (2022). The flow map of the fokker–planck equation does not provide optimal transport. *Applied Mathematics Letters*, 133, 108225. https://doi.org/https://doi.org/10.1016/j.aml.2022.108225

Lee, H., Lu, J., & Tan, Y. (2022). Convergence of score-based generative modeling for general data

- distributions. NeurIPS 2022 Workshop on Score-Based Methods.

 Lee H. Lu, L. & Tan, Y. (2024). Convergence for score-based generative modeling with polynomial complex
- Lee, H., Lu, J., & Tan, Y. (2024). Convergence for score-based generative modeling with polynomial complexity. Proceedings of the 36th International Conference on Neural Information Processing Systems.
- Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Gool, L. V. (2022). Repaint: Inpainting using denoising diffusion probabilistic models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11451–11461. https://api.semanticscholar.org/CorpusID:246240274
- Pardoux, E. (1986). Grossissement d'une filtration et retournement du temps d'une diffusion. In J. Azéma & M. Yor (Eds.), *Séminaire de probabilités xx 1984/85* (pp. 48–55). Springer Berlin Heidelberg.

- Shah, K., Chen, S., & Klivans, A. (2023). Learning mixtures of gaussians using the DDPM objective.

 Thirty-seventh Conference on Neural Information Processing Systems.

 https://openreview.net/forum?id=aig7sgdRfl
- Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*. https://openreview.net/forum?id=PxTIG12RRHS
- Wenliang, L. K., & Moran, B. (2022). Score-based generative model learn manifold-like structures with constrained mixing. *NeurIPS 2022 Workshop on Score-Based Methods*. https://openreview.net/forum?id=eSZqaIrDLZR
- Xiao, Z., Kreis, K., & Vahdat, A. (2022). Tackling the generative learning trilemma with denoising diffusion GANs. *International Conference on Learning Representations*.
- Zach, M., Kobler, E., Chambolle, A., & Pock, T. (2024). Product of gaussian mixture diffusion models. *Journal of Mathematical Imaging and Vision*. https://doi.org/10.1007/s10851-024-01180-3
- Zach, M., Pock, T., Kobler, E., & Chambolle, A. (2023). Explicit diffusion of gaussian mixture model based image priors. In L. Calatroni, M. Donatelli, S. Morigi, M. Prato, & M. Santacesaria (Eds.), Scale space and variational methods in computer vision (pp. 3–15). Springer International Publishing.